Therapeutic antibody to radiation inducible TIP1 activates immune effector cells

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43CA167853-01
Agency Tracking Number: R43CA167853
Amount: $278,123.00
Phase: Phase I
Program: SBIR
Awards Year: 2012
Solitcitation Year: 2012
Solitcitation Topic Code: NCI
Solitcitation Number: PA11-096
Small Business Information
Duns: 968330436
Hubzone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (636) 346-5963
Business Contact
Phone: (860) 938-2315
Research Institution
DESCRIPTION (provided by applicant): The overall objective of this research is to test the hypothesis that monoclonal antibodies to radiation-induced tumor neoantigens cause therapeutically beneficial immune responses in cancer models. We will study the efficacy of a mouse monoclonal antibody to a radiation-inducible neoantigen and analyze immune effector cell activation to control cancer. This strategy complements the use of existing therapeutic antibodies by inducing additional cell surface tumor antigensfor simultaneous targeting by multiple antibodies. Presently, therapeutic antibodies for cancer are limited to antigens that are either specific to cancer or are over-expressed in cancers. Not only is the number of such antigens limited, but they also tend to be over-expressed in a small percentage of patients (e.g. 30% breast cancers express Her2/neu). In contrast, radiation-inducible antigens are expressed in nearly all cancers tested thus far and expand the number of therapeutic targets for antibody development. The principles of radiation-inducible neoantigens are that cancer cells over-express certain intracellular proteins including TIP-1, the focus of this proposal. Cancer cells respond to ionizing radiation by transporting these proteins to the cellsurface. In order to investigate the potential of therapeutics targeted to radiation- induced tumor antigens, we developed a monoclonal antibody to the radiation-induced antigen, TIP-1. We propose studies to test the hypothesis that the antibody to this antigen induces therapeutic anti-tumor immune responses. Tax interacting protein-1 (TIP-1) is a membrane-associated protein that is over-expressed in poor prognosis cancer including non-small cell lung cancer. We recently found that TIP-1 undergoes radiation- induced translocation to the cell surface. Cancer specific antibody binding is achieved in vivo for several days by anti-TIP-1 antibody administration after irradiation, and optical imaging and immunohistochemical staining indicated that this antibody (1A6H14) achieves specific binding to irradiated cancer in mouse models. As noted above, the proposed approach is dependent on the induction of anti-tumor immune responses (antibody- dependent cellular cytotoxicity, ADCC; antibody-dependent cellular phagocytosis, ADCP; and perhaps an adaptive T cell response) based on opsonization of tumor cells by the anti-TIP-1 mAb and recognition of the Fc by Fc receptors on natural killer (NK) cells, dendritic cells (DC) and other cell types. Importantly, it has been shown that several approved anti-cancer therapeutic mAb, including trastuzumab, cetuximab and rituximab, have portions of their mechanisms of action through ADCC and ADCP. PUBLIC HEALTH RELEVANCE: Because of the poor prognosis of non-small cell lungcancer even with current therapies, there is a need for new treatments. The proposed studies will investigate a novel approach to cancer treatment: the use of monoclonal antibodies to radiation-induced tumor antigens.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government