Efficient scouting instrumentation for the determination of reverse micelle encap

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$157,019.00
Award Year:
2012
Program:
SBIR
Phase:
Phase I
Contract:
1R43GM100565-01
Award Id:
n/a
Agency Tracking Number:
R43GM100565
Solicitation Year:
2012
Solicitation Topic Code:
NIGMS
Solicitation Number:
PA11-096
Small Business Information
200 Racoosin Drive, Suite 106, Aston, PA, 19014-
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
167878938
Principal Investigator:
RONALD PETERSON
(610) 361-8509
ron@daedalusinnovations.com
Business Contact:
RONALD PETERSON
(267) 499-2013
ron@daedalusinnovations.com
Research Institute:
Stub




Abstract
DESCRIPTION (provided by applicant): Detailed knowledge of the structures is a vital component of our understanding of the molecular basis of life. From a practical point of view, the atomic-scale structure of the protein can potentially greatly facilitatethe design of effective pharmaceuticals. Modern nuclear magnetic resonance (NMR) spectroscopy continues to be a central technique in the characterization of the structure and dynamics of proteins, nucleic acids and their complexes. Ongoing advances in experimental techniques continues to push the size limits accessible by NMR and clever sample preparation methods has opened the door for the study of otherwise recalcitrant proteins such as integral membrane proteins. However, progress continues to be largely incremental, and it is clear that a radical shift in approach will likely be necessary to fully implement a knowledge-based approach to fundamental problems in human health and disease. The reverse micelle technology was originally devised to address theslow tumbling problem presented by large soluble proteins to solution NMR methods. From that initial conception it has been shown to be useful for studying a wide array of traditionally intractable proteins such as integral and anchored membrane proteins,aggregation prone proteins, and marginally stable proteins. The basic idea is to take the protein of interest and encapsulate it within the protective aqueous core of a reverse micelle particle and dissolve the entire assembly in a low viscosity fluid such as liquid ethane. In the low viscosity fluid, the reverse micelle particle tumbles faster than the protein dissolved in bulk water. This provides a significant improvement in the NMR relaxation properties governing the efficiency of the modern triple resonance experiments. By using this method protein constructs as large as 150 kDa can be studied without benefit of deuteration or the TROSY effect and thus more comprehensive structural and dynamical information can be obtained. To maximize this effectreverse micelle samples must be prepared in liquid ethane, which requires the preparation of samples under significant pressure and maintenance of the pressurized sample within an NMR sample tube. Daedalus Innovations has overcome the initial barrier to the implementation of this approach by developing hardware solutions for researchers to produce such samples in a safe and reproducible manner without the need for any previous experience with high-pressure applications. In this proposal we seek to develop an instrument that overcomes the current critical limitation to regular use, which is the seeming daunting task of finding encapsulation conditions for new proteins. Currently, the conditions for encapsulation (surfactant mixture; sample buffer; etc.) is optimized manually often in a material intensive manner. This is unacceptable for most non-academic applications and is certainly non-ideal in general. A more streamlined and less personnel and material intensive approach is needed. We propose to develop aninstrument that will allow relatively automated examination of an array of encapsulation conditions and will identify optimum combinations using a variety of spectroscopic probes, and do so with minimal consumption or reagents. The instrument will build upon Daedalus Innovations' proven technology. The goal is to provide researchers having no intimate knowledge of the art of protein encapsulation to make use of this powerful technology. The proposed instrument will complete the suite of instruments offeredby Daedalus Innovations that is designed to provide a turn-key solution for structural studies of macromolecules using the reverse micelle encapsulation strategy. PUBLIC HEALTH RELEVANCE: Biomedical research continues to expand the use of detailed atomic-scale structure in developing a detailed understanding of the molecular basis for life and for disease. Tools for the identification of means for intervention at the molecular level are of paramount importance. This proposal seeks to continue the development of a novel approach to structure determination by nuclear magnetic resonance. If successful, this technology could serve as a powerful platform for the rational design of pharmaceuticals for the treatment of an array of human diseases.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government