Production of Activated TDP-Deoxysugars in E. coli

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43GM100638-01
Agency Tracking Number: R43GM100638
Amount: $152,732.00
Phase: Phase I
Program: SBIR
Awards Year: 2012
Solicitation Year: 2012
Solicitation Topic Code: NIGMS
Solicitation Number: PA11-096
Small Business Information
ZUCHEM, INC.
2225 W. Harrison St., CHICAGO, IL, 60612-4671
DUNS: 126677041
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 MICAH SHEPHERD
 (309) 495-7338
 mshepherd@zuchem.com
Business Contact
 GINA BERARDESCO
Phone: (312) 997-2150
Email: ginab@zuchem.com
Research Institution
 Stub
Abstract
DESCRIPTION (provided by applicant): The ultimate goal of the proposal presented herein is to use E. coli as whole cell biocatalysts for the production of a wide variety of TDP-deoxysugars including di- and tri-deoxysugars, amino sugars and branched-chainsugars. These specialized activated hexoses are found as important structural components throughout plant and microbial secondary metabolites often playing a crucial role in conferring activity in bioactive natural products such as antibiotics and anticancer therapeutics. We propose to investigate a novel approach to produce rare TDP-deoxysugars in Escherichia coli through metabolic engineering. By combining genetic mutations which separately lead to increased bioavailability of glucose-6-phosphate (G6P; an intermediate of TKDG) and TDP-4-keto-6-deoxy-D-glucose (TKDG; an intermediate of TDP-deoxysugars) we plan to increase the accumulation of the TKDG precursor beyond previous reports. Additional over-expression of endogenous TKDG biosynthetic proteins mayfurther optimize TKDG production. Finally, exogenous TDP-deoxysugar biosynthetic genes will be introduced into the strain to convert the accumulated TKDG pool into specific TDP-deoxysugars. Specifically, in Phase I we will demonstrate the feasibility of TDP-deoxysugar production in E. coli through by 1) developing analytical methods for the isolation, purification and characterization of TDP-deoxysugars produced by E. coli, 2) metabolically engineering E. coli to accumulate the TKDG and, 3) demonstrating the utility of the resulting TKDG over-producing strain by producing various TDP-deoxysugars. Specifically, biosynthetic genes responsible for the individual production of TDP-D- fucose, TDP-D-fucofuranose and TDP-D-olivose will be placed into inducible E.coli expression vectors and transformed into the engineered strain accumulating TKDG. We propose the resulting strains will be capable of producing at least 50 mg/L of TDP-D-fucose, TDP-D-fucofuranose and/or TDP-D-olivose in the Phase I study. In Phase II, we will scale-up production of TDP-deoxysugars and optimize chromatographic techniques for increased throughput. Furthermore, we will continue to utilize various TDP-deoxysugar biosynthetic genes for the production of amino sugars, branched-chain sugarsand additional deoxysugars. In Phase III we will commercialize the technology developed by offering a wide variety of TDP-sugars for sale, carrying out custom synthesis of TDP-sugars, and carrying out custom glycodiversification projects. PUBLIC HEALTH RELEVANCE: This project is aimed toward developing E. coli as a whole-cell biocatalyst for the production of activated TDP-deoxysugars. These deoxysugars can be used to make derivatives of natural products with new therapeutic properties, for example,antibiotics that are effective against antibiotic-resistant bacteria.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government