Parsimonious Models for Survival Data

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43GM101729-01A1
Agency Tracking Number: R43GM101729
Amount: $222,751.00
Phase: Phase I
Program: SBIR
Awards Year: 2012
Solitcitation Year: 2012
Solitcitation Topic Code: NIGMS
Solitcitation Number: PAR09-220
Small Business Information
INSILICOS
111 Queen Anne Ave N., #500, SEATTLE, WA, -
Duns: 126643241
Hubzone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 CHRIS FRALEY
 (206) 979-4832
 chris.fraley@insilicos.com
Business Contact
 ERIK NILSSON
Phone: (206) 979-4832
Email: erik.nilsson@insilicos.com
Research Institution
 Stub
Abstract
DESCRIPTION (provided by applicant): This Small Business Innovation Research project addresses the problem of biomarker detection in clinical and high-throughput data. The objective is to investigate new approaches for deter- mining, from data consisting of many possibly irrelevant or redundant measurements, a highly predictive and interpretable model that involves only a small number of measurements. These new methods will be studied for modeling subjects' time-to-event (such as stroke, heart attack, or metastasis in cancer). The proposed approaches will be compared with existing methods that attempt to use relatively few mea- surements in modeling survival (time-to-event) data. The data to be analyzed will include ion-mobility and clinical data from a large cardiovascular disease cohort, as well as high-throughput genomic data from cancer research with many more measurements than samples. Relevance. Although today's advanced technologies offer the possibility of revolutionizing clinical practice, the analytical tools available for extracting information from this amount of daa are not yet sufficiently developed for targeted exploration of the underlying biology. This project directly addresses the need to make what the FDA terms IVDMIA (In-Vitro DiagnosticMultivariate Index Assays) transparent and interpretable, and is thus an opportunity to improve analysis services or products provided to companies that identify, characterize, and validate biomarkers for clinical diagnostics and drug development decisionpoints. The proposed project will produce robust methods for parsimonious biomarker detection that will speed the development of cheaper and more effective diagnostic tests for disease diagnosis, treatment monitoring, and therapeutic drug development.PUBLIC HEALTH RELEVANCE: There is a great need in medical research for prognostic models that can accurately predict time to an event, such as a heart attack, from a few observed features. These models can be used in establishing new diagnostic and screening tests, and in advancing new therapies. New methods for time-to-event modeling are proposed that will speed the development of cheaper and more effective clinical support systems, and have a far-reaching impact on public health.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government