Pediatric Head Models for Improved Imaging of Neurological Development

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$695,061.00
Award Year:
2010
Program:
SBIR
Phase:
Phase I
Contract:
1R43NS067726-01
Award Id:
96462
Agency Tracking Number:
NS067726
Solicitation Year:
n/a
Solicitation Topic Code:
NINDS
Solicitation Number:
n/a
Small Business Information
ELECTRICAL GEODESICS, INC., 1600 MILLRACE DR, STE 307, EUGENE, OR, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
809845365
Principal Investigator:
SERGEITUROVETS
(541) 346-0453
SERGEI@CS.UOREGON.EDU
Business Contact:
DENISESEWARD
() -
dmarquez@egi.com
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): While it is well known that the brain undergoes rapid developmental changes from birth to early childhood, remarkably little is understood about the relationship between changes in brain size and composition and normal cognitive development. Yet we now know that several potentially debilitating disorders, among them the Autism Spectral Disorders, Attention Deficit Hyperactivity Disorder and Schizophrenia, are a consequence of delays or abnormalities in brain development. In children, the study of normal cognitive and brain development is best accomplished using non-invasive techniques that are not overly restrictive of movement and do not require ionizing radiation. Of available techniques, electroencephalography (EEG), p articularly with the advent of high density sensor arrays, provides the ability to assess cognitive function safely and non-invasively. However, to provide functional localization of cognitively important brain regions and networks requires an accurate mod el of head tissue geometry and conductivity, particularly in the first years of life, when skull and brain change rapidly in composition and size. This Phase I project will create age-group head models based on measured conductivity values of skull and bra in for five age groups to determine when changes in head shape, size and composition significantly impact the ability to accurately localize seizure activity. By introducing advanced computational resources for creating patient-specific head models, we wil l allow to optimize the use of non-invasive dense-array EEG to elucidate the developmental trajectory of neural networks underlying cognition in normal children. PUBLIC HEALTH RELEVANCE: The product innovation proposed in this project will create ag e-group pediatric head models for neuroimaging . By introducing advanced computational resources for creating age-specific child head models, this technology will provide clinicians and researchers with a tool for optimal use of non-invasive high density E EG in localizing seizure activities and elucidating the developmental trajectory of neural networks underlying cognition in normal children.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government