GaAsSb/AlGaAs Superlattice High-Polarization Electron Source

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$999,924.00
Award Year:
2013
Program:
SBIR
Phase:
Phase II
Contract:
DE-FG02-12ER90264
Award Id:
n/a
Agency Tracking Number:
99431
Solicitation Year:
2013
Solicitation Topic Code:
34e
Solicitation Number:
DE-FOA-0000782
Small Business Information
7620 Executive Dr., Eden Prairie, MN, 55344-3677
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
876868647
Principal Investigator:
Yiqiao Chen
Dr.
(952) 934-2100
chen@svta.com
Business Contact:
Leslie Price
Ms.
(952) 934-2100
price@svta.com
Research Institute:
Stub




Abstract
The negative-electron-affinity (NEA) photocathodes which produce polarized electrons are a vital component of electron accelerators such as that at DoE Jefferson Lab and the Stanford Linear Accelerator Center (SLAC). Future systems, such as the International Linear Collider (ILC), will require a polarized electron beam intensity at least 20 times greater than produced by strained GaAs, which is used in the current generation of photocathodes. Additionally, the degree of electron polarization needs to be increased beyond the 80% currently attainable and intrinsic material properties related to improving the surface charge limit must also be addressed, and the photocathodes should be more robust in an RF gun environment. The end result of the combined Phase I and Phase II efforts will be a new generation of robust photocathodes capable of yielding intense, highly polarized electron beams for use in advanced electron colliders. We have previously achieved & gt; 85% polarization using a strained superlattice formed from alternating layers of GaAs and GaAsP approximately ten monolayers thick. For this program we will apply a novel superlattice concept utilizing antimony- and arsenic-based material which should overcome material limitations of the GaAs/GaAsP alloys. In Phase I we designed and fabricated an Sb-based strained superlattice structure grown by molecular beam epitaxy. The Phase I program optimized the growth conditions to achieve the desired alloy composition and interface quality. Photocathode structures were fabricated, and their polarization and quantum efficiency were measured at Jefferson Lab. In Phase II, the novel Sb-based SL photocathodes studied in Phase I will be further optimized by investigating parameters that can affect the polarization and quantum efficiency of these photocathodes for high current electron guns. We are also planning further improvement on QE. And finally, the performance of the optimized cathodes will be evaluated in realistic gun environment by Jefferson Lab. Commercial Applications and Other Benefits: A successful project will produce a highly efficient polarized electron source for use in experimental research at DoE Jefferson Lab, SLAC, and other electron collider facilities. These devices have applications in other areas, which include: magnetic imaging research, surface analysis, Quantum computing, and cryptography.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government