Continued Optimization of Low-Density Foam-Reinforced Ablatives for High-Velocity, High Heat Flux Earth Return Missions

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX13CA31P
Agency Tracking Number: 124895
Amount: $125,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2013
Solicitation Year: 2012
Solicitation Topic Code: H7.01
Solicitation Number: N/A
Small Business Information
Ultramet
CA, Pacoima, CA, 91331-2210
DUNS: 052405867
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Brian Williams
 Director Research Engineering
 (818) 899-0236
 brian.williams@ultramet.com
Business Contact
 Craig Ward
Title: Engineering Administrative Mgr
Phone: (818) 899-0236
Email: craig.ward@ultramet.com
Research Institution
 Stub
Abstract
In previous work for NASA, Ultramet and ARA Ablatives Laboratory developed and demonstrated advanced foam-reinforced carbon/phenolic ablators that offer substantially increased performance under high heat flux conditions and reduced weight relative to conventional ablators. The two-piece structure consisted of an ablative-filled foam front surface backed by Ultramet's previously established and highly insulating aerogel-filled foam. Arcjet testing was performed at NASA Ames Research Center to heat flux levels exceeding 1000 W/cm2, with the results showing a significantly reduced ablation rate compared to conventional chopped fiber ablators, and ablation behavior comparable to FM5055 at just one-third the density. It is apparent that the foam helps retain the char layer by physical reinforcement and/or that the network of interconnected passages allows pyrolysis gases to escape with less disruption of the char layer. In this project, Ultramet will team with ARA Ablatives for ablative infiltration of Ultramet foams and Materials Research and Design for ablation analysis, to continue optimization of foam-reinforced ablatives by focusing on two primary areas. The ablator formulation infiltrated into the foam will be modified to maximize heat flux capability consistent with NASA Earth return requirements (1500-2500 W/cm2), and a single-piece foam TPS structure will be developed rather than separate ablative- and aerogel-filled foam sections. Preliminary mechanical and thermal testing will be performed to support design and analysis and, depending on availability, initial ablation tests may be conducted at the Sandia Solar Tower Facility. High heat flux testing at the Air Force LHMEL facility or alternative would be performed in Phase II.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government