Accelerating Communication-Intensive Applications via Novel Data Compression Techniques

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$125,000.00
Award Year:
2013
Program:
SBIR
Phase:
Phase I
Contract:
NNX13CA43P
Award Id:
n/a
Agency Tracking Number:
124118
Solicitation Year:
2012
Solicitation Topic Code:
S5.01
Solicitation Number:
n/a
Small Business Information
FL, Weston, FL, 33326-4040
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
Y
Duns:
196122878
Principal Investigator:
JuanGonzalez
Principal Investigator
(954) 888-4711
juan.gonzalez@accelogic.com
Business Contact:
JuanGonzalez
Business Official
(954) 888-4711
juan.gonzalez@accelogic.com
Research Institute:
Stub




Abstract
Processor speed has traditionally grown at a rate faster than that ofcommunication speed in computer and supercomputer networks, and it isexpected that this trend will continue even stronger, as we move into theexascale age in the upcoming decade. This has resulted in what is known asthe "communication gap" for communication-bound HPC applications: theircommunication-to-computation time-ratio is so large, that the processorsremain mostly sub-utilized, with lots of "disposable" FLOPS available. Inthe last few years, scientists have proposed to use these disposable FLOPS(which otherwise would be wasted idling) to compress and decompress thecommunicated data so to effectively speed up the underlying application.Although the idea bears tremendous potential, efforts in this direction haveconsistently rendered very poor results, with typical resulting speedupsaveraging below 1.5x. In this project, we identify the strongest reasons whytraditional data compression has fallen short in terms of speedupperformance for HPC, and propose novel techniques particularly crafted forgroundbreaking performance within the HPC framework. Preliminary resultsshow that these techniques break the 10x speedup markup consistently for awide class of HPC applications of primary importance to NASA. We propose todevelop the theory and methods behind these techniques, which ultimatelywill result into a library product for transparent acceleration of HPCcommunication platforms, such as MPI. Accelogic has already secured PhaseIII private capital in the amount of $1 million for the deployment of suchpotentially revolutionary product, following a successful Phase II.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government