You are here

Extreme Environment, Rad Hard, High Performance, Low Power FPGA for Space Applications

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX13CM15P
Agency Tracking Number: 124849
Amount: $125,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: H6.02
Solicitation Number: N/A
Solicitation Year: 2012
Award Year: 2013
Award Start Date (Proposal Award Date): 2013-05-23
Award End Date (Contract End Date): 2013-11-23
Small Business Information
Plano, TX 75093-4539
United States
DUNS: 828058508
HUBZone Owned: No
Woman Owned: Yes
Socially and Economically Disadvantaged: Yes
Principal Investigator
 Nisha Checka
 (617) 500-5481
Business Contact
 Nisha Checka
Title: CEO/Founder
Phone: (617) 500-5481
Research Institution

To enable NASA's next-generation missions, there is a critical need for a reconfigurable FPGA that can withstand the wide temperatures ranges and radiation of the space environment while consuming minimal power without compromising on performance. To address this need, GoofyFoot Labs proposes the E2-AMP FPGA, a radiation hardened, high performance, low power AMP FPGA capable of operating reliably over wide temperature ranges and rapid thermal changes. The 150-nm E2-AMP FPGA achieves up to 790-MHz peak performance while consuming 7x less power than conventional, commercial counterparts, implementing TMR. The E2-AMP FPGA provides exceptional protection from SEUs, SETs, SEL, and high TID while maintaining high performance and low power levels that exceed even today's highest performing, commercial FPGAs. The E2-AMP FPGA's reconfigurability enables last-minute, no-cost design changes and upgrades even after launch, greatly enhancing mission profile while reducing mission cost and risk. Unlike any other FPGA, rad hard or unhardened, the E2-AMP FPGA can operate reliably at extreme hot and cold temperatures and can also seamlessly tolerate rapid thermal changes without sacrificing performance and without significant designer effort. To handle extreme temperatures, conventional ICs are protected via onboard heat shields or warm boxes to maintain ambient temperatures to a much smaller range. This equipment increases the SwaP of the system and also degrades system reliability. The E2-AMP FPGA will operate correctly across a large temperature range reducing the amount of required thermal regulation. Moreover, we will enhance the E2-AMP FPGA's native low power consumption through the incorporation of a number of power savings techniques. With the E2-AMP FPGA, designers of space-based or high-altitude systems operating in hostile radiation environments and at extreme temperatures can reduce system SWaP, while adding flexibility, capability, and robustness to any system.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government