Maximum Hydrogen Storage Densities in Scalable, Low-Cost Vessels through Compression and Adsorption

Award Information
Agency:
Department of Defense
Branch
n/a
Amount:
$784,086.00
Award Year:
2013
Program:
SBIR
Phase:
Phase II
Contract:
FA9302-13-C-0030
Award Id:
n/a
Agency Tracking Number:
F103-225-1218
Solicitation Year:
2010
Solicitation Topic Code:
AF103-225
Solicitation Number:
2010.3
Small Business Information
200 Yellow Place, Pines Industrial Center, Rockledge, FL, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
175302579
Principal Investigator:
Justin Hill
Senior Engineer
(321) 631-3550
jhill@mainstream-engr.com
Business Contact:
Michael Rizzo
CFO
(321) 631-3550
mar@mainstream-engr.com
Research Institution:
Stub




Abstract
ABSTRACT: This proposal outlines a scalable, low-cost procedure for fabrication of hierarchical hybrid nanomaterials that produce ultra-high pressure tolerance and surface area vessels. These vessels enable physical storage of hydrogen through compression and adsorption at densities predicted to exceed DOE 2015 requirements by 65% and 98% for volumetric and gravimetric standards. In Phase I Mainstream exceeded DoE"s 2015 gravimetric requirement by 2-fold and achieved 75% of DoE"s 2015 target value for volumetric storage. The hybrid nanomaterial is composed of a moderate strength structure with tunable orientation, surface area and volume. It is additionally included with high strength material to enhance vessel pressure tolerance and hydrogen physisorption without loss of volumetric storage. Furthermore, the novel storage medium comprises a safe technology that would gain immediate market penetration in the area of hydrogen storage, transportation and delivery. Phase II will demonstrate this technology as well as demonstrate system storage densities in excess of 100 g-hydrogen/L-system and 12% g-hydrogen/g-system; well beyond DoE"s 2015 targets. Safe, portable and low-pressure hydrogen compression will also be demonstrated with the technology as a safe and controlled hydrogen release mechanism. A scale-up production plan, market study and market penetration points will be completed by the end of Phase II. BENEFIT: The development of this nanomaterial hybrid vessel for hydrogen storage would have immediate application in hydrogen fuel cells and hydrogen powered applications. The vessel could safely store hydrogen for transport and delivery but would also facilitate a controllable yet high flow rate of hydrogen release.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government