Failure Initiation Prediction for Reliability-Based Design of Hybrid Composite Materials

Award Information
Agency:
Department of Defense
Branch
Air Force
Amount:
$750,000.00
Award Year:
2010
Program:
STTR
Phase:
Phase II
Contract:
FA9550-10-C-0027
Award Id:
90161
Agency Tracking Number:
F08A-025-0080
Solicitation Year:
n/a
Solicitation Topic Code:
AF 08T025
Solicitation Number:
n/a
Small Business Information
Firehole Technologies (Currently Firehole Technologies, Inc.)
210 s. 3rd, Suite 202, Laramie, WY, 82070
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
017019105
Principal Investigator:
Don Robbins
Chief Engineer
(307) 460-4763
robbinsd@fireholetech.com
Business Contact:
jerad stack
CEO
(307) 460-4763
stackj@fireholetech.com
Research Institution:
University of Wyoming
Mark Garnich
1000 E. University Ave
Laramie, WY, 82072
(307) 766-2949
Nonprofit college or university
Abstract
The objective of this project is to develop extensions to Multicontinuum Technology (MCT) that enable accurate and efficient analysis of textile composite structures. In addition, probabilistic analyses will be performed to demonstrate the applicability of MCT for textile composite material selection and structure design. The project will build on the successful two-constituent MCT by generalizing the algorithms that access constituent information so they can be applied routinely to 3 or more constituents. The accessed information will serve as the basis for developing local (mesoscale) material failure predictions as was successfully demonstrated as viable in the Phase I project. These failure prediction capabilities at the local mesoscale will enable enhanced fidelity of material degradation modeling for the development of accurate progressive failure analysis capabilities. The modeling capabilities will be validated by comparison with existing and newly generated experimental data for the weave material and its structural application in a pi-joint. The capabilities developed will be automated for use within the modeling environment of the commercial finite element code ABAQUSr and embodied in the commercial code Helius:MCTr. The methods will be generally applicable for finite element structural analysis of composites composed of textile or hybrid materials. BENEFIT:  A software application capable of simulating the behavior of textile composite structures has wide-spread potential applications. Military applications include aircraft structures like the F-35 / JSF, composite armor for patrol and combat vehicles and next generation helicopter rotors. Commercial application include Wind turbine blades with built-in passive pitch control, advanced sporting goods technology such as golf clubs and tennis racquets, and high end automotive application such as Formula 1 cars. The benefits of the technology proposed include reduced need for costly testing programs, more highly optimized composite designs, as higher degree of confidence when redesigns are necessary, and shorter development cycles for composite structures by enabling more "certification by simulation."

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government