Innovative technologies to effectively treat Multi-drug resistant and/or biofilm-

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43GM093398-01A1
Agency Tracking Number: GM093398
Amount: $172,763.00
Phase: Phase I
Program: SBIR
Awards Year: 2010
Solicitation Year: 2010
Solicitation Topic Code: NIGMS
Solicitation Number: PHS2010-2
Small Business Information
DUNS: 148070860
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (651) 209-9757
Business Contact
Phone: (651) 209-9757
Research Institution
DESCRIPTION (provided by applicant): This Phase I project is to evaluate a series of novel drug combinations to prevent and treat wound infections. Wounds have certain characteristics that promote the development of infections: the presence of devitalized tissue, foreign bodies, clots, fluid collections, and contamination of wounds with bacteria from the casualty's skin, the environment and the hospital. Medical reports from the military actions in Iraq and Afghanistan confirmed the emergence of multi-drug resistant bacteria (MDR) such as Acinetobacter baumannii, Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus, and multi-drug resistant Pseudomonas aeruginosa. Infections caused by these multi-drug resistant organisms appear to result in significant morbidity and mortality. Bacteria within biofilms are inherently insensitive to antiseptics, microbicides, and host immune system. To complicate the problem further, the MDR bacteria can form biofilm at the wound sites or implant surfaces, causing infections that are insensitive to host immune system and antibiotic therapies. An effective antimicrobial strategy to prevent and treat biofilm is desperately needed in both military and civilian care. In this project, we propose a series of novel drug combinations as antibiofilm formulations. Efficacy of the antibiofilm formulations will be assessed in a wound dressing model using nanofibrillar chitosan meshes as a topical delivery carrier. The proposed technology combines characteristics including nanofibrillar barrier, hemostatic activity, antibiofilm efficacy, and controlled release strategy. PUBLIC HEALTH RELEVANCE: It was estimated that nosocomial infections affect about 2.0 M people in the U.S. each year and costs more than 11.0 B to the healthcare providers. Wound care and indwelling catheters, the two most commonly associated areas of infection, experienced a surge of antimicrobial devices in the 1990s. By 2007, the US wound care market has grown to an estimated 10 B. This growth has driven efforts to reduce infection that resulted in the development of antimicrobial dressings.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government