SBIR Phase I:Electro-active Polymer-based Energy Harvesting

Award Information
National Science Foundation
Solitcitation Year:
Solicitation Number:
NSF 09-609
Award Year:
Phase I
Agency Tracking Number:
Solicitation Topic Code:
Small Business Information
KCF Technologies
112 W. Foster Ave., State College, PA, 16801
Hubzone Owned:
Woman Owned:
Socially and Economically Disadvantaged:
Principal Investigator
 Michael Grissom
 (814) 867-4097
Business Contact
 Michael Grissom
Title: PhD
Phone: (814) 867-4097
Research Institution
This Small Business Innovation Research Phase I project seeks to demonstrate an electro-active polymer-based energy harvesting system to power portable electronics and remote devices. As portable wireless electronics and wireless sensors become ubiquitous, their power sources (batteries) continue to be the limiting factor in their dependability. The ability to harvest enough energy from the motion of a typical portable device to power it has been elusive. Prior efforts have been insufficient primarily due to inefficient energy transfer. Start-of-the-art electro-active polymers (EAPs) and innovative mechanical and electrical impedance matching designs will be used to develop an energy harvesting system with harvested energy density well above standard EAPs. Inefficiencies result from three aspects of the energy harvesting system, mechanical impedance mismatch, electrical impedance mismatch, and inefficient electromechanical conversion material properties. The proposed effort addresses all three of these aspects with a novel electro-active polymer-based energy harvesting system. The system combines recently developed electro-active polymer materials with novel electronic design to maximize the energy transfer from mechanical motion into stored electrical energy. The broader impact/commercial potential of this project is based on leveraging the unique opportunity for energy harvesting from electro-active polymers developed during the past decade. Heretofore, the potential created by the prior investments into electro-active polymer material development have been unrealized. This project is designed to enhance the understanding of these materials in useful market applications. Two target applications have been chosen based on their potential market size, broad impact, and ability to demonstrate the full capability the electro-active polymer energy harvesting ? 1) button activation on a handheld device and 2) walking motion in the ankle. The button activation is chosen for the large impact it will have in the handheld electronics consumer market. The walking motion application is chosen to demonstrate how an EAP harvesting system can be fully integrated into the functionality of a structure, in this case a prosthetic foot for amputees. Button-push harvesters delivered to consumer electronics OEMs is expected to have a total available market of $100M annually. The walking energy harvesters for prosthetics and portable electronics are expected to have a total available market of $10M annually.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government