Roll-to-Roll Printing of Patterned Nanomembranes on Flexible Substrates

Award Information
Department of Defense
Award Year:
Phase II
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
2401 Crest Line Dr., Madison, WI, -
Hubzone Owned:
Minority Owned:
Woman Owned:
Principal Investigator:
David Grierson
President and CTO
(608) 217-9700
Business Contact:
David Grierson
President and CTO
(608) 217-9700
Research Institution:
University of Wisconsin-Madison
Kim Moreland
Research and Sponsored Program
21 N. Park Street, Suite 6401
Madison, WI, 53715-1218
(608) 262-3822
Nonprofit college or university
Flexible electronic and optical devices, including sensors/detectors, waveguides, and photonic crystal structures, have significant promise for improving communication and information processing capabilities in a number of military and commercial applications. However, the development of such flexible devices has been hindered by the lack of effective manufacturing processes for producing these devices on flexible substrates with small feature sizes over large areas. In our Phase I STTR project, we developed and demonstrated the feasibility of a novel rolling-based manufacturing process for directly transferring large-area arrays of inorganic patterned nanomembrane (NM) structures onto flexible substrates. Our approach realizes the fabrication of nanostructured devices on flexible substrates by combining established lithography techniques (optical and/or nanoimprint) with our rollingbased direct-transfer process. During Phase I, arrays of silicon nanomembranes (SiNMs) were patterned on rigid wafers and then transferred from the rigid substrates to flexible polyethylene terephthalate substrates with high yield and excellent placement fidelity. In Phase II, we will develop and optimize a prototype transfer tool that advances the capability of our rolling-based transfer process and enables the transfer of large-area arrays of NM components that have sub-optical-wavelength dimensions. We will demonstrate the transfer of arrays components patterned via nanoimprint lithography over large areas on flexible substrates and will also use the process and prototype tool to fabricate photonic devices on flexible substrate. The prototype tool will serve as a basis for a system that can be commercialized in order to allow industrial, academic, and military customers to manufacture a range of NM-based flexible electronic and photonic devices.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government