Development of Novel Tricyclic Pyrone Drugs for Treatment of Alzheimer Disease

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$596,058.00
Award Year:
2013
Program:
SBIR
Phase:
Phase I
Contract:
1R43AG043203-01A1
Award Id:
n/a
Agency Tracking Number:
R43AG043203
Solicitation Year:
2013
Solicitation Topic Code:
NIA
Solicitation Number:
PA12-088
Small Business Information
522 Second Avenue, REDWOOD CITY, CA, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
160127655
Principal Investigator:
XINMIN XIE
(650) 995-7320
simonxie@afasci.com
Business Contact:
XIAOSU LI
(650) 219-8199
sueli@afasci.com
Research Institute:
n/a
Abstract
DESCRIPTION (provided by applicant): Development of Novel Tricyclic Pyrone Drugs for Treatment of Alzheimer's Disease Alzheimer's disease (AD) afflicts approximately 35 million people worldwide and is the most common cause of dementia in the elderly. Thereis an unmet medical need for new AD therapeutic development. Amyloid-b (Ab) deposited in AD brains has been hypothesized to initiate a cascade of molecular changes leading to synaptic dysfunction, inflammation, and neuronal death observed in AD brains. Therefore, designing therapies targeting Ab and downstream events have become a major effort in AD drug development. We have taken the rational design approach and synthesized a class of tricyclic pyrone compounds (TPs). The lead compounds CP2 and TP70 werefound to have high oral bioavailability, excellent blood-brain barrier permeability, and low toxicity. Administering compounds either orally or intraperitoneally to young AD transgenic models in 'preventive studies' resulted in substantially reduced soluble and insoluble Ab species in the brain and preserved memory and motor function. Furthermore, we have found that in addition to being able to block the toxicity and formation of both intraneuronal and extracellular A aggregates, the lead TPs also increasecellular cholesterol efflux, restore axonal trafficking, and enhance hippocampal synaptic placidity - these synergistic cellular actions could be potential mechanisms underlying in vivo effects. The discovery of these lead TP compounds comes from the collaboration among Dr. Hua, a medicinal chemist, Dr. Jin, an AD neuropathology expert, and recently the PI Dr. Xie, who has substantial experience in pharmaceuticals and contributed to drug development in the CNS therapeutic area. Dr. Xie at AfaSci started with developing the SmartCageTM system and then has taken advantage of the technology in translational research. In the proposed project with the support of this phase I SBIR, we will thoroughly study pharmacokinetics (PK) and in vivo pharmacodynamics (PD)of the lead TPs, through accomplishment of the following Specific Aims: 1. Focus on two novel lead compounds CP2 and TP70 in the therapeutic studies: We will generate PK/PD and ADME (absorption, distribution, metabolism, and excretion) profiles of lead compounds. We will focus on investigating the in vivo efficacy (neurobehavioral and neuropathological outcomes) of lead compounds by oral administration to the AD model APP/PS1 mice. These studies will provide evidence-based selection of a therapeutic candidate using the criteria of druggable PK profile, in vivo efficacy especially in cognition, and improved pathologic outcomes. 2. Utilization of novel lead compounds LRL22 and LRL50 as backup compounds, if needed, and preparation for good manufacturing practice (GMP) production of the selected therapeutic candidate. Although we have identified five top backup TP compounds, we will use our previously discovered novel leads LRL22 and LRL50 which possess different chemical structures from TP, but alsoshown inhibition of Ab-induced toxicity and neuroprotection as backup compounds. The backup compounds will be re-synthesized and ready to be tested in vivo as described in Aim 1, should both CP2 and TP70 not fulfill the criteria of therapeutic candidates. We will also optimize the chemical synthesis process in preparation for GMP production of the identified therapeutic candidate for a Phase II study. Success in the Phase I study will prepare for investigational new drug (IND)-enabling studies in a PhaseII project. Our ultimate goal is to translate our preclinical discovery of the novel TP compounds into clinical therapeutic candidates that possess AD disease-modifying properties. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: Alzheimer's disease (AD) is the major cause of dementia and one of the most disabling health conditions worldwide. Current drugs only have modest effects and there is an unmet need to develop more effective and safer medicines for the treatment of AD. We here propose tostudy two novel tricyclic pyrone compounds that show potent cell protective action against Ab toxicity for their potential to treat cognitive impairment and slow disease progression in an animalmodel of AD.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government