Selective MRTF/SRF-Transcription Inhibitors: Novel Anti-fibrotics for IPF

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43AI106166-01A1
Agency Tracking Number: R43AI106166
Amount: $287,766.00
Phase: Phase I
Program: SBIR
Awards Year: 2013
Solicitation Year: 2013
Solicitation Topic Code: NIAID
Solicitation Number: PA12-088
Small Business Information
ALBERTON, MT, 59820-0010
DUNS: 130194082
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (406) 243-6251
Business Contact
Phone: (406) 864-0022
Research Institution
DESCRIPTION: Antibiotic resistance among common bacterial pathogens is a serious public health problem as it compromises our ability to treat infectious disease. The resistance problem is compounded by the relative lack of discovery of new antibiotics, especially those with novel mechanisms of action. Over the past several years Promiliad Biopharma has been developing new inhibitors that target the enzyme dihydrofolate reductase as a method of treatment for pathogenic bacteria, fungi and protozoa. Throughour efforts and those of our collaborators, largely funded by STTR grants, we have discovered a class of antifolates characterized by a 2, 4- diaminopyrimidine and a biaryl domain linked through a three-atom propargyl bridge. This class of molecules is animportant lead in the discovery of a new treatment for infectious disease. The current class of compounds, while potent antibacterial agents with activity against antibiotic resistant pathogens, currently lack sufficient metabolic stability. These compounds have short in vivo (and in vitro) half-lives which make progression to lead compound status somewhat difficult. We have found that by substituting a key fragment of the structure with a non-metabolizable bioisostere we can retain potency against a rangeof Gram positive pathogens while greatly improving selectivity and metabolic half-life. The goal of this project is o design, synthesize and assay additional bioisosteric analogs which display similar or better improvements in potency, metabolism and physical properties. Our goal in this Phase I application is to obtain a clear lead candidate. A Phase II project continuing from this work would then conduct IND-enabling experiments with the clear goal of filing an IND application. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: The ability to treat infections has become compromised by growing resistance to current antibiotics and has become a serious threat to public health. The significance of the threat is greater as there have been fewer antibiotics being approved for use in recent years and the discovery of a new class of antibiotic is a rare event. By employing medicinal chemistry we have been able to develop a set of second generation folate antibiotics based upon the structure of trimethoprim. These compounds are active against a range of pathogens including methicillin-resistant Staphylococcus aureus (MRSA). This project seeks to develop a clear lead candidate that will undergo preclinical evaluation with the ultimate goal of entering clinical trials.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government