Cartilage storage solution for chondrocyte viability and biomaterial preservation

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43AR064033-01
Agency Tracking Number: R43AR064033
Amount: $312,642.00
Phase: Phase I
Program: SBIR
Awards Year: 2013
Solicitation Year: 2013
Solicitation Topic Code: NIAMS
Solicitation Number: PA12-088
Small Business Information
2231 Technical Parkway, Suite A, NORTH CHARLESTON, SC, 29406-
DUNS: 175100333
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (843) 514-6164
Business Contact
Phone: (843) 514-6164
Research Institution
DESCRIPTION (provided by applicant): Resurfacing of articular cartilage with cold stored osteochondral allografts is employed clinically for repair of trauma and osteoarthritis-induced articular cartilage surface damage. Chondrocyte viability of transplanted articular cartilage is accepted as one of the determinants of outcome following osteochondral allograft transplantation. Refrigerated storage methods used for cartilage storage prior to clinical cartilage utilization need to be carefully evaluated because the tissue may be experiencing clinically significant deterioration during storage. We have recently investigated cartilage cell viability and matrix permeability during storage in culture medium, as well as storage solutions, and found that both deteriorate within the time frames that they are utilized for clinical procedures. Culture medium that preserves chondrocyte viability best under cold refrigerated storage conditions does not preserve matrix permeability and, vice versa, nutritionally deficientsolutions that preserve matrix permeability have significantly less cell viability. This objective ill be developed in three specific aims. In these aims two solution formulations, one based on intracellular and the other on extracellular milieu designs will be investigated. Chondrocyte viability, chemistry, biomaterial properties and gene expression will be compared over time during porcine cartilage storage. The gene expression studies will determine which formulation maintains normal untreated cartilageexpression of Sox9, aggrecan, collagen type II (versus dedifferentiation marker collagen type I), cartilage oligomeric matrix, a matrix resorption marker plus protein and hypertrophic marker genes. The solution that provides the longest preservation of chondrocytes with a normal untreated chondrocyte phenotype with minimal if any cartilage biomaterial changes will be selected for further investigation in vivo and translation to human cartilage in a subsequent Phase II SBIR application. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: Both literature review and an independent survey performed for Cell and Tissue Systems indicates that there is a significant need for a cartilage preservation solution for clinical and research applications that maintains chondrocyte viability, phenotype and cartilage biomaterial properties. The impact of this research will be optimized preservation of both articular cartilage chondrocytes and biomaterial properties making transplants more effective in vivo. Commercialization of this cartilage storage technology will result in increased utilization of banked allogeneic cartilage for reconstruction of articular cartilage defects in younger patients. The solution will also be commercialized for cartilage storage for research and future tissue engineered cartilage products.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government