Early diagnosis of acute kidney injury by aptasensors

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43DK098031-01
Agency Tracking Number: R43DK098031
Amount: $150,501.00
Phase: Phase I
Program: SBIR
Awards Year: 2013
Solicitation Year: 2013
Solicitation Topic Code: NIDDK
Solicitation Number: PA12-088
Small Business Information
1111 N HYLAND AVE, AMES, IA, 50014-
DUNS: 847055639
HUBZone Owned: N
Woman Owned: Y
Socially and Economically Disadvantaged: N
Principal Investigator
 (515) 292-5141
Business Contact
Phone: (515) 292-5141
Research Institution
DESCRIPTION (provided by applicant): Acute kidney injury (AKI) affects more than 10 million people worldwide each year with reported mortalities from 15 to 60% in different patient populations. However, methods are lacking to support the early diagnosis ofAKI that could lead to early intervention, improved therapy, better prognosis, and lower medical costs. For these reasons, the development of early diagnosis tools for AKI is one of the solicited research topics listed by the NIDDK. Our ultimate goal isto develop a portable device for reliable early detection of AKI at point of care. The innovation of our proposal lies in the combination of aptamer technology with microcantilever detection of serum/urine neutrophil gelatinase-associated lipocalin (NGAL),an early marker of AKI [2-4 hours at the onset of AKI with cutoff concentration of ~ 150 ng/ml (6.8 nM)]. Aptamers are ssDNAs/RNAs that bind their targets avidly and specifically, and are selected in vitro by Systematic Evolution of Ligands by EXponentialenrichment (SELEX). For biosensor development, aptamers have many advantages over antibodies, including their smaller size, amenability to chemical synthesis and modifications and adaptability to a broad range of assay formats including a microcantileverdetection system. A microcantilever is a beam, often of silicon, that is 1-5 m thick and 500-100 m long and anchored only at one end. The microcantilever bends when its surface stress changes due to the conformation change that occurs upon ligand-receptor (e.g. aptamer-target) interaction on its surface. The differential surface stress between a reference cantilever coated with a scrambled nucleic acid that does not bind the analyte and a sensing cantilever coated with an aptamer that binds the analyte ismeasured by interferometry. In this phase I study, we propose two specific aims: 1. Identify 2'F-modified aptamers that bind NGAL specifically with nanomolar affinity. 2. Demonstrate an aptamer-functionalized microcantilever device for NGAL detection.In phase I, we expect to develop a prototype of an aptamer-functionalized microcantilever that will be responsive to NGAL, which will be further optimized in phase II for reliable performance with serum and urine samples with robust signal/noise ratio, sensitivity, detection limit and dynamic range of measurement and that can be used at point of care to monitor for AKI. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: Acute kidney injury (AKI) affects more than 10 million people worldwide per year with 15-60% mortality. However, methods for early diagnosis of AKI are still lacking and consequently this is one of the research topics solicited by the National Institute of Diabetes and Digestive and Kidney Diseases. We propose to develop aptamer-based biosensors for early diagnosis of AKI at point of care, based on NGAL, an early marker (as early as 2-4 hours) for AKI.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government