Rapid, Near-Tranfusion Test for Bacteria in Platelets Units

Award Information
Department of Health and Human Services
Award Year:
Phase I
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
2811 Lillian Rd., ANN ARBOR, MI, 48104
Hubzone Owned:
Socially and Economically Disadvantaged:
Woman Owned:
Principal Investigator
 (723) 277-7043
Business Contact
Phone: (734) 277-7043
Email: p.g.adamczyk@gmail.com
Research Institution
DESCRIPTION (provided by applicant): Robotic Amputee Gait Capacity Assessment System Robotic prostheses can improve mobility for individuals with amputation, but assessment and prescription for each individual is difficult and errors are costly. We propose to determine the feasibility of a product that allows rapid, objective assessment of the functional benefits of various conventional and robotic ankle-foot prostheses in a clinical setting. Our first aim is to demonstrate a system capable of dynamic prosthesis emulation. We have recently developed an experimental robotic test bed with significantly enhanced mechatronic performance. In this project, we will test its suitability for high-level emulation of three classes of prosthesis: conventional (e.g. SACH), dynamic-elastic (e.g. FlexFoot), and robotic (e.g. BiOM), differentiated by the mechanical work absorbed or produced during a step. Our second aim is to develop objective and repeatable measures of the functional benefits to potential users of these devices, specialized for use in coordination with the robotic prosthesis emulator. Finally, we aim to demonstrate that such a system can differentiate between patients who would benefit from advanced robotic prostheses and those who would not. We propose toperform an experiment in which different classes of prosthesis are emulated and functional outcomes are assessed in four amputee subjects with different activity levels and etiologies. These experimental results will help determine which population groupscan be expected to benefit from the mechanical work provided by robotic foot-ankle prostheses, and provide insight into measures that systematically differentiate between potential beneficiaries and non-candidates. This research is the first step toward developing a diagnostic product that Orthotics and Prosthetics clinics can use to assess candidates for advanced robotic prostheses and justify reimbursement from insurance carriers on the basis of objective functional benefits. The eventual integrated product will consist of robotic prosthesis emulator hardware and software, with optional experimental tools. This clinical tool will be priced competitively with single autonomous robotic devices, in te same class as robotic gait trainers. More advanced platforms will eventually enable dynamic optimization of device parameters, such as keel length or stiffness, prior to device construction and purchase, and may even lead to the development of improved autonomous designs. PUBLIC HEALTH RELEVANCE PUBLICHEALTH RELEVANCE: This project comprises the development of a robotic prosthesis emulator for use in clinical settings. This system will allow rapid, objective, prospective assessment of the functional benefits of different conventional and robotic ankle-foot prostheses for individual patients with amputation, allowing the determination of the best choice of prescribed prosthesis. The proposed system will emulate commercial prostheses across the available spectrum, and provide hard data demonstrating howmuch gait improvement (e.g. increased speed or reduced energy cost) an individual subject can expect at each level of prosthesis performance and cost.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government