Simplifying fMRI Integration in the Cognitive Neurosciences

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$149,982.00
Award Year:
2013
Program:
SBIR
Phase:
Phase I
Contract:
1R43MH099771-01
Award Id:
n/a
Agency Tracking Number:
R43MH099771
Solicitation Year:
2013
Solicitation Topic Code:
NIMH
Solicitation Number:
PA12-088
Small Business Information
2116 VERMONT ST, LAWRENCE, KS, 66046-3064
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
185027344
Principal Investigator:
BRUNOTAGLIAFERRI
(718) 274-4938
perceptionresearch@gmail.com
Business Contact:
BRUNOTAGLIAFERRI
(785) 760-5365
perceptionresearch@gmail.com
Research Institute:
Stub




Abstract
DESCRIPTION (provided by applicant): Over the last two decades, fMRI has evolved into a widely used technology in basic biobehavioral research. The user base for this technology continues to increase due to the growth of the field of cognitive neuroscience, and this increase is poised to accelerate with adoption of fMRI to large-scale multi-site studies, translational studies, and clinical trials. In order to observe functionally relevant neural responses, it is necessary to conduct experiments in which brain activity is measured while audio/visual stimuli are presented, and behavioral responses are recorded. Further, the software controlling these behavioral experiments must be carefully synchronized with the functioning of the MR scanner itself. Thus, building capacity for fMRI research involves a massive investment in infrastructure for specialized hardware for audio/visual stimulus presentation, behavioral response recording and synchronization of these devices with the MR equipment. And yet, the criticalinterface between this infrastructure and the software that controls the behavioral experiments, that are the core of the functional assessments in fMRI, is often ad hoc, complicated to use and prone to failure. This creates time-consuming and expensive difficulties at multiple stages of the development and execution of studies, and creates a set of technical problems that are outside the core capabilities and training of the physicists, radiologists and technicians responsible for managing, running and maintaining the MR center. We propose to create a universal software/hardware interface that will dramatically streamline the development and implementation of studies at existing fMRI research sites. The device will provide a sturdy, fixed, standardized, flexible and intuitive interface between a wide variety of experimental control software and all widely used MR systems. Once a minimal viable product is developed, we will test its efficacy in an active fMRI research center. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: The lack of a standardized, easy-to-use solution for interfacing fMRI-related hardware and experimental control software is a barrier to the growth of the field of cognitive neuroscience. It also slows the realization of the fMRI's potential for use n clinical trials and the large, multi-site studies that are increasingly understood to be necessary for translational research into key areas relevant to human health. The proposed device will provide a commercial solution to theseproblems, freeing up the resources currently devoted to developing and maintaining ad hoc solutions, and accelerating the pace of research into basic brain mechanisms underlying cognition, as well as neurobehavioral markers of disease, disorder and response to treatment.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government