Parallel Solid-State Electrodes for Turn-Key Intracellular Electrophysiology

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43MH099841-01
Agency Tracking Number: R43MH099841
Amount: $316,260.00
Phase: Phase I
Program: SBIR
Awards Year: 2013
Solicitation Year: 2013
Solicitation Topic Code: NIMH
Solicitation Number: PA11-134
Small Business Information
160 Greentree Dr, Dover, DE, 19904-7620
DUNS: 78293247
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (650) 366-1844
Business Contact
Phone: (650) 366-1844
Research Institution
DESCRIPTION (provided by applicant): Interconnected networks of cells in the brain called neurons underlie all cognitive functions. Key advances in our understanding of brain function during the last several decades have resulted from technologies that permit monitoring of electrical activity in neurons. This technique, broadly referred to as electrophysiology, permits the study of circuits of connected neurons responsible for sensation, movement, thought, learning, and memory. These techniques have also revealed how abnormal electrical signaling between neurons can lead to dysfunction as occurs in disorders such as autism or Alzheimer's disease as well as due to damage from a stroke or traumatic injury. The most sensitive form of electrophysiological recording monitors very small electrical currents in single cells with glass pipettes placed inside the neuron. These 'intracellular' patch-clamp recordings are a powerful tool for exploring how neurons work-and don't work. Despite these great advances, currentintracellular recording technology has significant limitations: puncturing the cell damages it, leading to short recordings and abnormal biophysical and biochemical properties; skilled scientists are required, reducing the number of labs that can use thistechnique; and simultaneous recording from more than one or two neurons is rarely possible, making it challenging to study neuronal communication. Stealth Biosciences was established to overcome fundamental limitations of existing intracellular techniques. Our group invented a new technology which we call Stealth or biomimetic electrodes. These electrodes are able to fuse into the cellular membrane, providing a minimally damaging, electrically tight junction with the cell. Our initial measurements have demonstrated high-quality, long-term intracellular recordings that rival that of traditional patch-clamps. Biomimetic probes are based on standard silicon microfabrication processing, enabling large arrays of electrodes on inexpensive chips. Using support from a Phase I SBIR grant, we will refine the device and perform feasibility studies of this game changing, inexpensive, and easy-to-use intracellular recording platform. Our long-term goals are to develop this technology for wide commercial distribution among researchers to advance basic discoveries, accelerate drug development, and improve the health and well-being of those suffering from disorders of the brain. To achieve this ambitious program we outline two Phase I Specific Aims: Aim 1: Optimize Biomimetic Electrode Performance and Production In this Aim, we will assess the performance of different geometric and architectural designs for biomimetic electrodes. Designs will be evaluated for electronic characteristics as well as for electrophysiologicalperformance with cultured neurons. The fabrication process will be streamlined and structured with the goal of eventual large-scale fabrication. Specific milestone goals include electrical performance of lt 2mV noise, better than 0.1 ms time resolution,and lt200MW input impedance. Timing: Q2 and Q3. Aim 2: Functional Characterization of Biomimetic Probes with Cells in Culture The second Aim will characterize the biomimetic device performance for recording from rat hippocampal neurons. This stringenttest of intracellular recording capabilities will allow direct comparison to the gold- standard pipette-based patch-clamps. Cell recordings from the different probe designs in Aim 1 will be used to optimize fabrication techniques and probe design. Long-term recordings extending for days and possibly weeks will be used to demonstrate lifetime and temporal capabilities of the probes far exceeding what is possible with conventional patch-clamps. Timing: Q3 and Q4. We have brought together a strong team with expertise in electrophysiology, micro/nanofabrication, cell-to-cell communication, and business to support this technology development at Stealth Biosciences. At the end of this program, we will have an experimentally vetted system for 'turnkey' intracellular recordings. These will provide simple cell-preparation, gt16 individually addressable electrodes per chip, high-quality recordings, and compatibility with existing electrophysiological software and recording hardware. We believe these devices will find broad interest within the neuroscience community, both as a basic research tool, and for advanced applications in drug discovery and personalized medicine. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: Measuring the electrical activityof neurons is essential for understanding neural and brain activity, yet the current method of pipette patch-clamping is slow, expensive, and cannot be performed on many cells at once. Our program will harness a new technical breakthrough to create a simple to use electrical measurement platform for many cells at once that will have nearly equivalent performance, but lower cost and complexity.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government