Alternative Pathway Inhibitors for Orphan Indication

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$526,694.00
Award Year:
2013
Program:
SBIR
Phase:
Phase I
Contract:
1R44GM106579-01
Award Id:
n/a
Agency Tracking Number:
R44GM106579
Solicitation Year:
2013
Solicitation Topic Code:
NIGMS
Solicitation Number:
PA11-215
Small Business Information
947 E REDFIELD RD, TEMPE, AZ, 85283-4045
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
184992381
Principal Investigator:
NGUYENLY
(480) 491-2777
Win@BiosensingInstrument.com
Business Contact:
NGUYENLY
(480) 491-2777
Win@BiosensingInstrument.com
Research Institute:
Stub




Abstract
DESCRIPTION (provided by applicant): We are proposing a technology to help in three key areas of proteomics including (a) recognition of protein interactions, (b) characterization of post translational modifications, and (c) quantitative measurements athigh spatial and/or temporal resolution to address the dynamics of protein interactions. Several significant types of protein interactions remain difficult to study with existing technologies. For example, the analysis of membrane protein interactions (mostly glycol proteins) is challenging, because these proteins are not stable outside of their native amphiphilic cellular environment. Analysis of interaction kinetics between small molecules (lt500 Da, including a vast majority of metabolites and drugs) andproteins is also lacking, because these molecules are too small for fluorescence labeling, and the binding signals are too weak for label-free detection methods. Similarly problematic is the characterization of protein post-translational modifications, which alter protein behavior due to the attachment of a small functional group after translation. Specifically, we propose an electrochemically-enhanced plasmonic imaging (ECEPI) system to address key needs for quantitative analysis of protein interaction dynamics, including the ability to study membrane protein interactions in their native cellular state, characterization of small molecule interaction and post-translational modifications, measurement of interactions at high spatial and temporal resolution for the study of sub-cellular processes, and performing high-throughput analysis in multi-cellular and microarray formats. The ECEPI system relies upon careful integration of three core technologies: 1) the electrochemical surface plasmon resonance systems that have been successfully commercialized by Biosensing Instrument Inc. (BI) for their unique capabilities and solid performance, 2) a proprietary high resolution distortion-free prism-based surface plasmon resonance (SPR) imaging system currently under development at BI for high-throughput interaction analysis, and 3) a highly sensitive impedance imaging technique invented at Arizona State University. The success of this project will lead to a new instrument that is capable of: 1) Label-free real-time recognition and quantification of protein interaction kinetics; 2) Real-time characterization of post-translational modifications of proteins; 3) Quantitative measurement of small molecule interactions with proteins; 4) In situ quantification of membrane protein (and glycoprotein) interactions in their native cellular environment with cell-based assay; 5) High-resolution analysis of sub-cellular processes and; 6) High-throughput analysis in multi-cellular and microarray formats PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: This project aims to develop an electrochemically-enhanced plasmonic imaging (ECEPI) system that enables high-throughput analysis of protein interactions with small molecules and characterization of post-translational modifications in microarray or whole-cell based formats. The success of this project will lead to a major technological breakthrough in proteomics research and an instrument that can observe the interaction of drugs with proteins and cells in their native state.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government