Safe and effective anti CD154 antibodies for therapeutic intervention

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$2,960,698.00
Award Year:
2013
Program:
SBIR
Phase:
Phase II
Contract:
2R44AI098261-02
Award Id:
n/a
Agency Tracking Number:
R44AI098261
Solicitation Year:
2013
Solicitation Topic Code:
NIAID
Solicitation Number:
PA12-088
Small Business Information
16 CAVENDISH CT, LEBANON, NH, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
967719241
Principal Investigator:
MICHAEL ROSENZWEIG
(617) 699-0306
rosenzweig@immunext.com
Business Contact:
GAYLE GOSSELIN
(603) 493-5390
gbg@immunext.com
Research Institution:
Stub




Abstract
DESCRIPTION (provided by applicant): In both animal proof of concept studies and preliminary clinical trials, there is ample data demonstrating the potential therapeutic benefits o CD154 blockade for treatment of GVHD, organ transplantation and autoimmunediseases. However, development of CD154 as a therapeutic has been impeded by antibody toxicity observed in early clinical trials. GVHD is a complication of allogeneic Hematopoietic Stem Cell Transplantation (HSCT). GVHD remains a major cause of mortality in approximately 50% of patients who survive gt 1 year post transplant. The standard of care is limited to drugs that need to be taken long term, work moderately well and are associated with significant side effects. There is therefore profound unmet need and significant potential for drugs that are safe and efficacious. Studies in GVHD have demonstrated that anti-CD154 acts as a prophylactic and is effective as a monotherapy as demonstrated in NHP where permanent allograft tolerance can be achieved using short courses of treatments comprised of ?CD154 alone. This strategy eliminates the use of steroids and calcineurin inhibitors both of which are associated with numerous side effects. ?CD154 thus has a competitive advantage as most other drugs in development will require some form of combination therapy with either steroids or calcineurin inhibitors. A similar opportunity for improved clinical outcomes due to effective induction of tolerance exists in recipients of solid organ transplants. Furthermore, virtually all autoimmune disease models can be effectively ameliorated with ?CD154 therapy, with long-term remission observed. We will target GVHD and chronic rejection associated with transplantation as our first clinical indication for commercial development. Existing studies strongly suggest that domains within the Fc region of the ?CD154 mAb contribute to its toxicity and therapeutic capacity. When toxicity was observed in the clinic and retrospectively in NHP, modifications were made to the antibody; while these modifications eliminated toxicity in NHP, the efficacy of ?CD154 as a tolerogenic antibody also was significantly reduced. As a result, development programs for ?CD154 as a therapeutic stalled. In Phase 1 studies we identified modifications that resulted in safe and efficacious versions of CD154 as tested in murine models. The goal of this proposal is to build on those observations and generate variant forms of the ?human CD154 antibody that retain the beneficial tolerogenic effects of ?CD154while greatly reducing or eliminating toxicity. Variant forms of the antibody will be evaluated for both safety and efficacy in NHP models. Successful proof of concept in NHP transplant models will be the basis for creating a novel therapeutic, which could have far-reaching impacts on the treatment of autoimmune diseases and organ transplantation. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: Development of ?CD154 as a therapeutic for autoimmune diseases and transplantation has shown great promisein human clinical trials but development has been hindered by problems with antibody toxicity. In the past, when toxicity was reduced, the efficacy of the antibody was dramatically decreased leading to the suspension of developmental programs. This project will engineer new variants of the ?CD154 antibody that will eliminate toxicity while maintaining tolerogenicity, thus allowing the potential of ?CD154 to be harnessed as a novel treatment for a wide range of diseases.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government