The Transfusion Chip: Phase II Technology Validation

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44HL110442-02
Agency Tracking Number: R44HL110442
Amount: $1,732,966.00
Phase: Phase II
Program: SBIR
Awards Year: 2013
Solitcitation Year: 2013
Solitcitation Topic Code: NHLBI
Solitcitation Number: PA12-088
Small Business Information
3450 S. Broadmont, TUCSON, AZ, 85710-
Duns: 141832860
Hubzone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (520) 904-1715
Business Contact
Phone: (847) 359-1032
Research Institution
DESCRIPTION (provided by applicant): Blood-Typing is the progenitor of the entire field of personalized medicine. In the recently awarded 6-month Phase I, we proposed to take the first step in the development of an extremely-low-cost microarray test, TheTransfusion-Chip (T-Chip) which convert the historical practice of Blood-Typing by serology into a simple inexpensive DNA test. Here, in this follow-on Phase II, we demonstrate substantial success in achieving key Phase I milestones: we have developed andoptimized 22 PCR reactions, comprising the entire 7 gene blood group gene set [ABO, Rh, Duffy, Kidd, Kell, Dombrock and MNS]; we have fabricated a Transfusion-Chip microarray prototype capable of analyzing all known genetic variation in the 7 gene set; and via technology that we had not yet invented when we filed the Phase I, we have developed a new variant of the original GenUSA microarray test which will drop the manufacturing cost of T-Chips to values as low as 1 per microarray. In Phase I we have also shown that the raw, unpurified OrageneTM-stabilized saliva can used as the basis for DNA based Blood-Typing on the T-Chip. We feel that the coupling of raw OrageneTM-stabilized saliva collection with the low cost T-Chip could become a unique technology pairing: because it would allow self-collection of DNA samples, at home, then low- cost ambient temperature shipping to centralized labs, to be followed by very-low-cost, very high throughput Blood-Typing on T-Chips. This model for population scale Blood-Typing will be the development focus in this Phase II: thereby enabling, we propose, an entirely new vision for population-scale blood banking and transfusion medicine, and in the process, will allow Blood- Typing to return, in the 21st century, to prominence as the model and gold standard for the field of genetically personalized medicine: as it first did a hundred years ago. Based on that model for population-scale blood group genetic testing, we propose the following set of Phase II Aims. SA1. Complete andValidate the Multiplex PCR Front-end to the Transfusion-Chip, for DNA Samples. SA2. Complete and Validate the Multiplex PCR Front-end to the Transfusion-Chip, for Raw Samples. SA3. Optimize and validate fabrication of the Transfusion-Chip in the 48 arrayper slide 1 microarray format. SA4. Modify existing GenUSA analysis software, RicimerTM, for automated blood group typing. SA5. Validate the Transfusion-Chip for purified DNA, raw blood and raw OrageneTM-stabilized saliva samples. Phase II Deliverablesand Commercialization Plan. Upon completion of this Phase II, we will have ready a Transfusion-Chip kit prototype (microarrays, PCR reagents, Hybridization Reagents, Specialized Software) for subsequent Beta Testing. This kit will be prepared under manufacturing control (ISO 13845) similar to the HLA-Chip products from GenUSA which are currently being launched into tissue compatibility and immunogenetics markets. Subsequent to completion of Phase II, GenUSA will launch the T-Chip into the RUO Blood-Typingmarket and prepare simultaneously for FDA 510(k) submission to enter into the diagnostics market either alone, or in partnership with those with a proven market presence in transfusion medicine or at-home sample collection, or both. PUBLIC HEALTHRELEVANCE PUBLIC HEALTH RELEVANCE: Blood group antigen typing by serology (Blood-Typing) has been, for a century, the progenitor and gold standard for the entire field of personalized medicine. Here we propose to pair two technologies recently developedat GenUSA [Raw Sample Genotyping + 1 Microarrays] to allow Blood-Typing to become a low-cost genetic test: A saliva or a dried blood sample could be self-collected at home in a simple clinic, then shipped by ordinary book-rate mail to a central lab, whereupon arrival in the lab, Blood-Typing would be performed inexpensively via 1 microarray testing . We propose that this new vision for very-large-scale public health genetics will not only revolutionize the regulation of the blood supply and the practiceof transfusion medicine, but will also serve as a model for a new approach to genetically personalized medicine: much as Blood-Typing, by serology, created (personalized) Transfusion Medicine a century ago.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government