SBIR Phase I: Advanced Hydrodesulfurization Catalysts

Award Information
Agency:
National Science Foundation
Branch
n/a
Amount:
$150,000.00
Award Year:
2013
Program:
SBIR
Phase:
Phase I
Contract:
1248696
Award Id:
n/a
Agency Tracking Number:
1248696
Solicitation Year:
2012
Solicitation Topic Code:
NM
Solicitation Number:
n/a
Small Business Information
201 E. Jefferson St, Suite 111B, Louisville, KY, 40202-1249
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
830836040
Principal Investigator:
Mayank Gupta
(502) 718-9996
mayankgupta16@gmail.com
Business Contact:
Mayank Gupta
(502) 718-9996
mayankgupta16@gmail.com
Research Institution:
Stub




Abstract
This Small Business Innovation Research (SBIR) Phase I project proposes to demonstrate the feasibility of a new type of advanced hydrodesulfurization (HDS) catalyst for deep desulfurization purposes. Specifically, metal nanoparticles supported on zinc oxide nanowires are proposed for creating higher performance, reactive adsorbent type HDS catalysts. HDS is a process used for the removal of sulfur from hydrocarbon fuels. In this process, fuels are treated with hydrogen gas in the presence of a catalyst. The environmental regulations are continuously pushing down the sulfur levels allowed in transportation fuels and will continue to lower the limits much below 10 ppm in future. Also, low sulfur concentrations are desirable for various fuel cell and refinery technologies where presence of small amounts of sulfur can poison the catalysts. The current, traditional HDS catalysts are efficient in removing the sulfur to levels down to around 20 ppm and leaves behind difficult-to-remove thiophenic sulfur compounds. In this project, an advanced catalyst and a scalable and cost-effective manufacturing is proposed that can accomplish deep desulfurization for lowering sulfur levels down well below 5 ppm. The broader/ commercial potential of this project will be improved air quality and energy/cost savings for the nation from improved durability of fuel cell and several refining technologies. The project's other outcome will also include new manufacturing technologies for advanced catalyst materials which is crucial for both the nation and the state of Kentucky to be globally competitive in terms of energy technologies. The catalyst materials using ZnO nanowire supports will also find applications beyond deep hydro-desulfurization such as C1-C4 alcohol production using syngas, and steam reforming of methanol. The market size for the proposed catalysts is estimated to exceed $1B considering the number of application areas.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government