SBIR Phase I: A Bioactive Hernia Mesh Containing Choroid Plexus Factors For Improved Tissue Integration

Award Information
Agency:
National Science Foundation
Branch
n/a
Amount:
$150,000.00
Award Year:
2013
Program:
SBIR
Phase:
Phase I
Contract:
1248710
Award Id:
n/a
Agency Tracking Number:
1248710
Solicitation Year:
2012
Solicitation Topic Code:
BC
Solicitation Number:
n/a
Small Business Information
155 Pelletier Lane, Tiverton, RI, 02878-3007
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
014888243
Principal Investigator:
Chris Thanos
(401) 228-6088
cgthanos@gmail.com
Business Contact:
Chris Thanos
(401) 228-6088
cgthanos@gmail.com
Research Institution:
Stub




Abstract
This Small Business Innovation Research (SBIR) Phase I Project continues the development of the choroid plexus (CP) growth factor cocktail for application to biologic hernia meshes to treat the challenging hernia repair market. CP factors represent a broad spectrum of potent biologic molecules that have demonstrated a benefit in the healing of splinted open wounds in diabetic mice, are neuroprotective, and can be harvested from cultured CP epithelium for at least a year. The current project focuses on formulating these factors into coatings that can be applied to porcine derived acellular dermal matrices in an attempt to provide modulation of the inflammatory cascade and subsequent improvement of engraftment. CP factors harvested from culture will be collected, purified, and concentrated into hydrogel coatings. Three markers of potency, VEGF, TIMP-2, and TGF-â, will be assessed by ELISA to characterize the raw materials, as well release profiles of various formulations. Using the rat midline abdominal defect model, coated mesh prototypes will be compared to commercially available products with a focus on histopathological characterization, gene expression within the graft, and mechanical integrity. The experimental design and selected endpoints are expected to provide the foundation for determining potential efficacy and subsequent product development pathways. The broader impact/commercial potential of this project, if successful will address the need of, approximately 200,000-400,000 patients annually who are associated with impaired healing, poor engraftment of traditional hernia meshes, and recurrence rates as high as 65%. With very high rates of primary repair failure, as well as hernia developing from simple laparotomy, there is a significantly large unmet clinical need resulting in a market size of approximately $1.7B. A successful translation into the clinic will result in a product that improves hernia mesh engraftment by accelerating inflammation and promoting cell migration and extracellular matrix production. Such a product has the potential for an immediate impact in the clinic due to the rise in prevalence of patients with challenging hernia repairs, and lack of available efficacious therapies. The studies proposed here are preliminary steps toward commercialization, with the opportunity to capture a significant portion of the approximately $1.7B market, none of which is currently occupied by growth factor therapies. By demonstrating a therapeutic benefit, this work could be commercialized rapidly through an ongoing partnership to provide near-term benefit to patients with impaired healing.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government