A General Solver Framework for Radiative Heat Transfer Models in Combustion Systems

Award Information
Agency:
Department of Defense
Branch
Air Force
Amount:
$149,905.00
Award Year:
2014
Program:
SBIR
Phase:
Phase I
Contract:
FA8650-14-M-2510
Award Id:
n/a
Agency Tracking Number:
F141-084-0170
Solicitation Year:
2014
Solicitation Topic Code:
AF141-084
Solicitation Number:
2014.1
Small Business Information
701 McMillian Way NW, Suite D, Suite D, Huntsville, AL, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
Y
Duns:
185169620
Principal Investigator:
RanjanMehta
Principal Engineer
(256) 726-4964
proposals-contracts@cfdrc.com
Business Contact:
DeborahPhipps
Contracts Manager
(256) 726-4884
dap@cfdrc.com
Research Institute:
n/a
Abstract
Modern combustion systems such as liquid rocket engines and gas turbines are characterized by high operating pressures and temperatures due to increased power-density. Thermal radiation has significant impact on both heat fluxes at the wall and on physical phenomena controlling the combustion process at these conditions. Coupling between radiation, turbulence and chemistry can have a large effect on the net radiative fluxes and heat loss from the flames. The objective of this SBIR project is to develop a general, computationally efficient, high-accuracy numerical tool to model radiation in combustion systems. CFDRC and University of California, Merced will assess the existing radiative transfer equation (RTE) solution methods as well as radiative property models for participating media including combustion gases and particulates such as soot. In Phase I, the various RTE solver methods and radiative property models will be assessed in canonical configurations such as jet flames and complex configurations such as scramjet combustors and supercritical rocket engines. Radiation modeling tools will be analyzed for their computational cost, accuracy, and strengths and weaknesses for Air Force relevant flow and combustion regimes. In Phase II, the model improvements will be implemented and validated and a stand-alone RTE solver framework will be built and demonstrated on CFD codes of interest to the Air Force.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government