Low Cost Oxygen Enriched Air by Membrane Separation

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-SC0011989
Agency Tracking Number: 212400
Amount: $150,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2014
Solicitation Year: 2014
Solicitation Topic Code: 11a
Solicitation Number: DE-FOA-0001046
Small Business Information
335 Water Street, Newport, DE, 19804-2410
DUNS: 808898894
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Ning Shangguan
 Dr.
 () -
 nshangguan@compactmembrane.com
Business Contact
 Stuart Nemser
Title: Dr.
Phone: (302) 999-7996
Email: snemser@compactmembrane.com
Research Institution
 Stub
Abstract
Oxygen enriched air (OEA) can be a valuable tool to enhance combustion processes, reduce CO2 emissions per unit of heat generated and also concentrate CO2 to enhance subsequent CO2 concentration ahead of CO2 sequestering. OEA reduces the presence of parasitic nitrogen and therefore flame temperature and associated heat transfer is higher with OEA. Studies show that using 40-50% OEA, which is the program target, reduces fuel consumption by upwards of 60%. Often, cryogenic oxygen is diluted with air to provide target OEA levels for combustion processes, however, the use of 99+% oxygen mixed with air is thermodynamically inefficient. The program hypothesis is to successfully develop facilitated transport membranes (FTM) using high flux, chemically and thermally resistant amorphous perfluoromembranes as the base matrix for FTM with addition of oxygen carriers. In Phase I we will first fabricate the target membrane structure. Then we will test both single gas (O2, N2) performance followed by mixed gas performance. Finally using this basic data we will do extensive engineering and economic evaluation to determine the cost of making 40-50% OEA by the CMS membrane process and compare it with conventional industrial processes (cryogenics, PSA, VSA) and high temperature oxygen separation membranes (based on ionic conduction in ceramic materials). Commercial Application and Other Benefit: Oxygen is one of the top five chemicals used domestically. Small to medium size furnaces, which represent approximately 40% of the nations furnaces, consume less than 5 tons/day of oxygen. These 5 tons small to medium size furnaces would be ideal for low cost 40-50% OEA. Parallel CMS preliminary studies suggest if successful this program can produce 40-50% OEA for $30/ton which is 50% less than conventional processes.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government