New Non-Carbonate Organosilicon Enhanced Safety High Temperature Electrolyte

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$154,494.00
Award Year:
2014
Program:
SBIR
Phase:
Phase I
Contract:
DE-SC0011899
Award Id:
n/a
Agency Tracking Number:
212557
Solicitation Year:
2014
Solicitation Topic Code:
07a
Solicitation Number:
DE-FOA-0001046
Small Business Information
3587 Anderson Street, Suite 108, Madison, WI, 53704-2587
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
800566155
Principal Investigator:
Tobias Johnson
Mr.
() -
tjohnson@silatronix.com
Business Contact:
Deborah Gilbert
Dr.
(608) 467-5626
dgilbert@silatronix.com
Research Institute:
Stub




Abstract
A major factor impacting development of Liion batteries for vehicles is the effect of elevated temperature ( & gt;50C) on battery life. Calendar and cycle life degrade at elevated temperatures due to degradation processes involving the interaction of the salt, solvents, and electrodes. Safety is undermined by use of high vapor pressure and low flash point volatile carbonate solvents. Overall, development of Li-ion batteries for vehicles, including enabling of high voltage cathode materials, requires new solvents and salts with electrochemical and thermal stability and safety characteristics that are beyond the capabilities of current state-of-the-art commercial electrolytes. In this proposal, a new non- carbonate Liion battery electrolyte will be developed by combining advanced generation organosilicon solvents with a lithium imide chemistry system. The organosilicon solvents are thermally and electrochemically stable with vapor pressures significantly lower than linear carbonates commonly used in Li-ion batteries. The use of high stability imide salts is enabled by a new current collector technology that solves the aluminum corrosion issue. By integrating an organosilicon solvent with lithium imide salts into an electrolyte, improved wide temperature range performance, enhanced safety, and the potential to integrate these advantages into higher energy Li-ion systems (i.e., higher voltage cathode, higher capacity anode) will be achieved. In Phase 1, we will focus on optimizing a new electrolyte for use in high energy density cells at elevated temperatures ( & gt;55C). Electrolytes will be characterized for electrochemical performance and thermal and electrochemical stability. Their interaction and safety profile with high energy density cathode and anode materials will be evaluated. Commercial Applications and Other Benefits: Success of this program will lead to lower cost and better performing Li-ion batteries for electric vehicles to support commercialization. Overall system cost will improve due to increased energy density and simplification of thermal management systems. Abuse tolerance of the system will increase as the new electrolytes will have lower vapor pressure and better stability at high temperature.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government