GaAsSb/AlGaAsP Superlattice Polarized Electron Source

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$999,810.20
Award Year:
2014
Program:
SBIR
Phase:
Phase II
Contract:
DE-SC0009516
Award Id:
n/a
Agency Tracking Number:
211567
Solicitation Year:
2014
Solicitation Topic Code:
41e
Solicitation Number:
DE-FOA-0001019
Small Business Information
7620 Executive Drive, Eden Prairie, MN, 55344-3677
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
41-176487
Principal Investigator:
YiqiaoChen
Dr.
(952) 934-2100
chen@svta.com
Business Contact:
LesliePrice
Ms.
(952) 934-2100
price@svta.com
Research Institute:
n/a
Abstract
The negative-electron-affinity (NEA) photocathodes which produce polarized electrons are a vital component of electron accelerators such as that at DoE Jefferson Lab and the Stanford Linear Accelerator Center (SLAC). Future systems, such as the International Linear Collider (ILC), will require a polarized electron beam intensity at least 20 times greater than produced by strained GaAs, which is used in the current generation of photocathodes. Additionally, the degree of electron polarization needs to be increased beyond the 80% currently attainable and intrinsic material properties related to improving the surface charge limit must also be addressed, and the photocathodes should be more robust in an RF gun environment. The end result of the combined Phase I Phase II effort will be a new generation of robust photocathodes capable of yielding intense, highly polarized electron beams for use in advanced electron colliders. We have previously achieved & gt; 85% polarization using a strained superlattice formed from alternating layers of GaAs and GaAsP approximately ten monolayers thick. For this program we will apply a novel strain- compensated superlattice concept utilizing antimony-, arsenic-, and phosphorus-based material which should overcome material limitations of the GaAs/GaAsP alloys. In the Phase I we designed and fabricated an Sb- and P-based strain-compensated superlattice structure grown by molecular beam epitaxy. The Phase I program optimized the growth conditions to achieve the desired alloy composition and interface quality. Photocathode structures were grown and characterized. Novel Sb-based SL photocathodes studied in Phase I will be further optimized by investigating parameters that can affect the polarization and quantum efficiency of these photocathodes for high current electron guns. Further improvement on QE The performance of the optimized cathodes will be evaluated in realistic gun environment by Jefferson Lab. Commercial Applications and Other Benefits: A successful project will produce a highly efficient polarized electron source for use in experimental research at DoE Jefferson Lab, SLAC, and other electron collider facilities. These devices have applications in other areas which include magnetic imaging research, surface analysis, Quantum computing and cryptography.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government