Enhancing longevity of implanted medical devices

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43EB019225-01A1
Agency Tracking Number: R43EB019225
Amount: $158,643.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: NIBIB
Solicitation Number: PA14-071
Timeline
Solicitation Year: 2015
Award Year: 2014
Award Start Date (Proposal Award Date): 2014-09-30
Award End Date (Contract End Date): 2016-06-30
Small Business Information
5153 N VIA VELAZQUEZ, Tucson, AZ, 85750-7101
DUNS: 151525248
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 LEON RADZIEMSKI
 (520) 529-2305
 ljrpet@comcast.net
Business Contact
 LEON RADZIEMSKI
Phone: (520) 529-2305
Email: ljrpet@comcast.net
Research Institution
 Stub
Abstract
DESCRIPTION provided by applicant Advanced methods for wirelessly recharging batteries for implanted medical devices are needed The useful lifetime of most implants is constrained by the longevity of the power source The goal of this program is to implement the development of an UltraSound Electrical Recharging system USerTM within a clinically deployed gastric sphincter stimulation system A successful Phase I will lead to expanded use of an existing therapeutic device and also demonstrate the potential of USerTM as a power platform for many other implants This combination of power delivery and therapy is innovative While the ultrasound transmit and receive technique has long been used for materials testing to our knowledge it has never been employed for wireless power delivery to medical devices The proposed project will influence technical capability and hence clinical practice The present method of recharging implantable batteries has been via electromagnetic induction Although useful it has its limitations such as the depth of tissue through which it can effectively transmt the use of increasingly crowded electromagnetic frequencies and the propagation of stray electromagnetic fields into the body and the local environment Ultrasound recharging can provide another option in cases where the electromagnetic induction method does not suffice reduce exposure to radiation and avoid conflicts due to overlapping uses of the same electromagnetic frequencies The specific aims will deal with questions that must be answered to prove feasibility The aims are to show that the power required for the application can be delivered within the geometrical constraints of the implant that the charging circuitry previously developed can be substantially miniaturized to fit into the implant and to conduct in vivo tests o the system The wireless power transmission technology is based on well known principles of ultrasound which is known for its safety in diagnostic applications The potential advantages include smaller transmitters and receivers elimination of electromagnetic interference and heating of metal parts and the transmission of power to deeper sites in the body This new technique will drive new therapeutic applications hence improving medical options to combat medical conditions The USerTM technology will support the NIH mission in its goals of improving human health and reducing healthcare costs This will be done by minimizing the distress and complications caused by battery replacement operations by increasing the implant functions via providing more power by improving patient satisfaction and compliance and by reducing operations to replace batteries and other components PUBLIC HEALTH RELEVANCE Ultrasound wireless energy transfer will extend the lifetime of implanted medical devices and make associated therapies accessible to patients suffering from a variety of conditions Most implanted devices currently use permanent batteries which need to be replaced periodically or electromagnetic recharging Ultrasound wireless power transfer offers another power delivery option to advance public health goals by reducing infections distress pain and complications associated with replacing batteries and avoiding radiation and other concerns with the electromagnetic method As a result health care costs will also be reduced significantly

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government