Self-Deploying Foam Antenna Structures

Award Information
National Aeronautics and Space Administration
Award Year:
Phase I
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
Adherent Technologies, Inc.
9621 Camino del Sol NE, Albuquerque, NM, 87111
Hubzone Owned:
Minority Owned:
Woman Owned:
Principal Investigator:
Dr. Andrea E. Hoyt
(505) 346-1688
Business Contact:
Susan Switzer
Business Official
(505) 346-1685
Research Institution:
Jet Propulsion Laboratory
Dr. Lesli Deutsch
4800 Oak Grove Drive
Pasadena, CA, 91109
(818) 354-3845
Federally funded R&D center (FFRDC)
Inflatable or self-deployable systems offer the only practical way to achieve space deployed antennas with low mass at large aperture. In this Phase I program, open-celled rigid polyurethane foams were developed for use in self-deploying antenna structures. Advantages of such a system relative to current systems include high volumetric efficiency of packing, inherent restoring force, low (or no) outgassing, low thermal conductivity, high dynamic damping, mechanical isotropy, infinite shelf life, and easy fabrication with methods amenable to construction of large structures (i.e., spraying).In Phase I, it was demonstrated that rigid polyurethane foams with a variety of glass transition temperatures (Tgs) can be easily formulated using commercially available urethane components; foam systems with Tgs ranging from 30 to 150?C were prepared. The ability to tailor the system Tg is a critical element in tailoring the deployment of these systems on-orbit. The ability to create open cells in rigid polyurethane foams was also demonstrated; a sample was prepared with greater than 50% open cell content. Open-celled foams are critical for achieving high packing efficiency and maintaining dimensional stability of the structures during thermal cycling. It was also demonstrated during the course of the Phase I program that metallized open-celled foams can perform well for antenna applications. RF insertion loss testing in the frequency range 12-17 GHz on foam samples coated with approximately 3.5 microns of metal indicated a minor loss of 0.2 dB, clearly demonstrating the promise of metallized foams for antenna applications.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government