Activators of Adipocyte Fatty Acid Oxidation

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43DK065430-01
Agency Tracking Number: DK065430
Amount: $99,944.00
Phase: Phase I
Program: SBIR
Awards Year: 2003
Solicitation Year: N/A
Solicitation Topic Code: N/A
Solicitation Number: N/A
Small Business Information
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (617) 638-5351
Business Contact
Phone: (617) 638-6389
Research Institution
DESCRIPTION (provided by applicant): Obesity is a well-established risk factor for a number of diseases, including type 2 diabetes and coronary heart disease. Existing drug and dietary treatments for obesity are only modestly effective. An approach that is very likely to be effective in treating obesity and with a good side effect profile is a drug that acts directly on lipid metabolism in the fat cell. The mission of AdipoGenix, Inc. is to discover and develop novel therapeutics acting at the level of the fat cell for treating obesity, diabetes, and related metabolic disorders. The enzyme carnitine palmitoyltransferase I (CPT I) is the critical control point for fatty acid metabolism in the cell and provides the main switch between free fatty acid (FFA) oxidation to CO2 and esterification to triglyceride (TG). A slight change in the balance between oxidation and synthesis could have a major impact on fat stores. Malonyl-CoA, an allosteric inhibitor of CPT I, regulates FFA oxidation and, consequently, fat storage. Compounds that interfere with the effect of malonyl-CoA on CPT I can promote CPT I activity and, thereby, FFA oxidation. We propose to characterize the differentiation- and fat depot-dependent expression of CPT I isoforms in human preadipocytes, and to develop high-throughput screens to identify compounds that relieve the inhibitory effect of malonyl-CoA on CPT I and thereby stimulate oxidation. Relative quantitative RTPCR and Western blotting will be used to analyze expression of CPT I isoforms in human adipocytes during differentiation and from different anatomical depots. A high-throughput assay to measure activity of CPT I in isolated mitochondrial preparations and in permeabilized human adipocytes in the presence and absence of the inhibitor malonyl-CoA will be developed. In parallel, a high-throughput assay to measure oxygen consumption in human adipocytes using an oxygen-sensing microplate-based system will be developed. The assay determined to be most suitable for HTS will be used to screen chemical libraries in Phase II. Achievement of these aims will establish a viable HTS assay and secondary assays for identifying compounds that activate CPT I and increase oxidation in human adipocytes. Development of such compounds may lead to therapeutic interventions that are effective for modulating lipid metabolism and treating obesity.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government