Impedance-based Sensing Optimization & Algorithms for Visualization of Ship Hull Structural Health Monitoring Data

Award Information
Agency:
Department of Defense
Branch
Navy
Amount:
$69,999.00
Award Year:
2010
Program:
STTR
Phase:
Phase I
Contract:
N00014-10-M-0301
Award Id:
95181
Agency Tracking Number:
N10A-042-0344
Solicitation Year:
n/a
Solicitation Topic Code:
NAVY 10T042
Solicitation Number:
n/a
Small Business Information
10 Canal Park, Suite 601, Cambridge, MA, 02141
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
111487588
Principal Investigator:
SethKessler
President
(617) 661-5616
skessler@metisdesign.com
Business Contact:
SethKessler
President
(617) 661-5616
skessler@metisdesign.com
Research Institute:
U.C. San Diego
Carlos D Molina J.D.
9500 Gilman Drive
Mail Code 0934
La Jolla, CA, 92093
(858) 534-0247

Abstract
The implementation of structural health monitoring (SHM) systems into naval applications has been hindered due to component quantity, including sensors, power/communication cables, and acquisition/computation units, as well as data quality. Particularly for large-area applications such ship hulls, complexity of implied system infrastructure can be impractical, and data can be worthless with attenuation and EMI pickup on long analog cables. The payoff of reliable real-time SHM would be the ability to detect/characterize in-situ damage for condition-based maintenance, thereby greatly reducing overall life-cycle costs. Metis Design Corporation (MDC) has demonstrated point-of-measurement datalogging and digital sensor-busing during prior Phase II SBIR work, which minimizes SHM infrastructure and EMI susceptibility. During the proposed STTR effort, MDC will further exploit this SHM architecture to satisfy Navy mission requirements. Phase I will have 2 main research thrusts: optimization of an impedance-based damage characterization method, and development of diagnostic visualization tools. UCSD will adapt their piezo-impedance method to be compatible with MDC hardware, optimize size/placement, and develop/calibrate diagnostic algorithms. MDC will facilitate the UCSD detection method with their mature SHM infrastructure, and provide a state-of-the-art graphical interface for visualization of diagnostic results in support of blind validation testing. Phase II would extend this tool to include prognostics.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government