CNT-based Composite Self-Monitoring & De-icing System

Award Information
Agency: Department of Defense
Branch: Navy
Contract: N68335-10-C-0227
Agency Tracking Number: N101-038-0991
Amount: $149,999.00
Phase: Phase I
Program: SBIR
Awards Year: 2010
Solicitation Year: 2010
Solicitation Topic Code: N101-038
Solicitation Number: 2010.1
Small Business Information
10 Canal Park, Suite 601, Cambridge, MA, 02141
DUNS: 111487588
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Seth Kessler
 President
 (617) 661-5616
 skessler@metisdesign.com
Business Contact
 Seth Kessler
Title: President
Phone: (617) 661-5616
Email: skessler@metisdesign.com
Research Institution
N/A
Abstract
Composites are increasingly being adopted into aero-surfaces due to their superior specific strength and stiffness, however they can be susceptible to beneath visible-surface impact data. Furthermore, as with traditional aero-surfaces, ice accumulation can result in reduced lift and increased drag. Therefore, the Navy desires an innovative, self-monitoring system for composite wings and rotor-blades to monitor surface conditions. During this SBIR, Metis Design Corporation (MDC) proposes to provide a novel solution to these requirements by leveraging 2 recent SBIR/STTR-funded innovations: direct-write (DW) and carbon nanotubes (CNTs). Through a NASA SBIR, MDC demonstrated with Boeing the ability to electrode a large complex surface using DW. Through an AFRL STTR, MDC demonstrated with MIT the ability to monitor the health of composites through CNT-enhanced resistance measurements. By combining these technologies, a simple, low-mass, reliable system can be produced to monitor composites for impact damage and ice-formation, as well as providing closed-loop automated de-icing. During Phase I, MDC will work with MIT & Boeing culminating in a demonstration of ice detection, de-icing and impact damage detection using DW-electroded CNT-enhanced composite specimens, with each element demonstrated independently using PC-based algorithms. In Phase I Option, MDC would embed these algorithms to demonstrate combined real-time standalone functionality.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government