SBIR Phase I:A Ground-Based Sensor Array for Wake Vortex Detection

Award Information
Agency:
National Science Foundation
Branch
n/a
Amount:
$149,981.00
Award Year:
2010
Program:
SBIR
Phase:
Phase I
Contract:
0945388
Award Id:
98867
Agency Tracking Number:
0945388
Solicitation Year:
n/a
Solicitation Topic Code:
4Ca
Solicitation Number:
n/a
Small Business Information
1777 Highland Drive, Suite B, Ann Arbor, MI, 48108
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
969868298
Principal Investigator:
DominiqueFourguette
MS
(323) 256-0547
dfourguette@michiganaerospace.com
Business Contact:
DominiqueFourguette
MS
(323) 256-0547
dfourguette@michiganaerospace.com
Research Institute:
n/a
Abstract
This Small Business Innovation Research (SBIR) Phase I project seeks to develop a low-cost, easily-deployable sensor suite capable of providing the entire flow velocity field of wake vortices produced by airplanes near airports. Large aircraft produce strong air vortices at their wingtips, a significant hazard for smaller following aircraft. Without observing the vortices, aircraft must be widely-spaced on takeoff and landing. Current systems for airport wake-vortex measurement, such as wind anemometers, Radar Acoustic Sounding Sensors (RASS) and pulsed Light Detection and Ranging (LIDAR), do not capture the detailed flow-field of the vortex, so hazardous situations like counter-rotating vortices may not be detected. The new technique is based on the use of a sensor suite located at specific points near the runway to map the vortical flow. This Phase I effort includes a demonstration of the concept using existing laboratory data (consisting of 2-D mappings of vortical wall flows), and trade studies and design of the sensor suite. The sensor concept will be prototyped and tested in Phase II in an airport setting. The broader impact/commercial potential of this project will be increased safety during take-off and landing, especially for small aircraft. Present practice is to allow a fixed amount of spacing after a particular aircraft type to allow the vortices it produces to dissipate, plus an added safety margin. The ability to directly observe the vortices will allow following distances to be based on actual conditions, allowing adaptive spacing, thus enhancing safety. In comparison with competing, more complex and more delicate LIDAR and radar-based systems, the low cost of this instrumentation will allow smaller airports, not just the largest ones, to be equipped with this technology. Such smaller airports using this capability can increase their flight capacity, thus potentially relieving larger hubs, especially if an emergency evacuation were to be declared. Larger airports can use the technology to increase overall safety, especially for smaller aircraft, allowing them to land and take off with confidence amongst the larger airliners. This effort will also increase our understanding of vortical wall flows, ubiquitous in windy conditions combined with rugged terrain. Derivative versions of this equipment will be useful for other applications, such as for emergency teams required to operate in hazardous-access, windy conditions.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government