SBIR Phase I: Plasma Enhanched Hot Filament Chemical Vapor Deposition of Ultrananocrystalline Diamond Thin Films

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 0610914
Agency Tracking Number: 0610914
Amount: $99,671.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: CT
Solicitation Number: NSF 05-605
Solicitation Year: 2005
Award Year: 2006
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
429B Weber Road, Romeoville, IL, 60446
HUBZone Owned: Y
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 James Birrell
 (708) 297-5017
Business Contact
 Neil Kane
Title: Mr
Phone: (217) 239-1963
Research Institution
This Small Business Innovation Research (SBIR) Phase I project will determine the feasibility and suitability of using a plasma enhanced hot filament chemical vapor deposition (PEHFCVD) technology as a manufacturing platform for the large scale deposition of ultra nanocrystalline diamond (UNCD) thin films. UNCD is synthesized today using a unique argon-rich plasma chemistry via microwave plasma chemical vapor deposition (MPCVD). As of today, MPCVD is the only known way to deposit UNCD, since C2 and C2H radicals are produced via Penning ionization collisions between Ar+ and C2H2. HFCVD is an attractive candidate to create a more scalable and economical manufacturing platform because recent advances have made it suitable for the large area uniform deposition of microcrystalline and nanocrystalline diamond thin films, but normally only produces radicals via thermal decomposition. The focus of the proposed work is to investigate the transferability of the unique (and patented) UNCD growth process to the HFCVD platform by utilizing a DC plasma discharge to generate C2 via nonequilibrium processes in addition to thermal decomposition, and to assay the films grown in this way using a variety of material characterization techniques to ensure that the films possess the desired materials properties inherent to UNCD thin films. The commercial value of this endeavor is to increase manufacturing throughput and lower costs through the development of a more robust large-area platform for UNCD deposition as compared to MPCVD. A large area, economical platform for manufacturing UNCD would make diamond a compelling material that would become affordable for applications ranging from tribological coatings (saving energy by lowering friction); electronics (extraordinary thermal management); and biomedical devices (implantable devices such as retinal prostheses).

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government