A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$99,782.00
Award Year:
2009
Program:
SBIR
Phase:
Phase I
Contract:
NNX09CC55P
Award Id:
90555
Agency Tracking Number:
084979
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
87 Church Street, East Hartford, CT, 06108
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
021804661
Principal Investigator:
Michael Serio
Principal Investigator
(860) 528-9806
mserio@AFRinc.com
Business Contact:
Michael Serio
Business Official
(860) 528-9806
mserio@AFRinc.com
Research Institute:
n/a
Abstract
Both pyrolysis and oxidation steps have been considered as the key solid waste processing step for a Controlled Ecological Life Support System (CELSS). Pyrolysis is more amenable to handling mixed solid waste streams in a microgravity environment, but produces a more complex product stream. Oxidation (incineration) produces a simpler product stream, but the oxidation of mixed solids is a complex unit operation in a microgravity environment. Pyrolysis is endothermic and requires no oxygen, while oxidation is exothermic and requires oxygen. A previous NASA SBIR Phase I and Phase II project has successfully integrated pyrolysis of the solid waste and oxidation of the fuel gases into a single, batch processing prototype unit. This Small Business Innovation Research Phase I project addresses the feasibility of integrating pyrolysis, tar cracking, and oxidation steps into a compact, efficient system for processing of spacecraft solid wastes. This integration will result in a reduction in energy consumption, an overall reduction in system complexity, and a lower Equivalent System Mass (ESM). The objective of the Phase I study is to demonstrate the feasibility of this integration process using bench scale experiments. This will be accomplished in three tasks: 1) design and construct integrated bench scale unit; 2) laboratory studies using simulated solid waste sample; 3) evaluation of laboratory results and preliminary design of Phase II prototype.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government