Nanoliter Lab-on-a-Chip for Rapid Parallel Immunoassays

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44CA114993-02
Agency Tracking Number: CA114993
Amount: $1,000,000.00
Phase: Phase II
Program: SBIR
Awards Year: 2008
Solicitation Year: 2008
Solicitation Topic Code: N/A
Solicitation Number: PHS2007-2
Small Business Information
DUNS: 140695474
HUBZone Owned: Y
Woman Owned: Y
Socially and Economically Disadvantaged: Y
Principal Investigator
 (919) 287-9010
Business Contact
Phone: (919) 287-9010
Research Institution
DESCRIPTION (provided by applicant): The great need for more efficient and effective oncologic drug development has driven the discovery and integration of biomarkers into all phases of clinical research. Further still, biomarkers are entering the clinical arena as early means of determining which patients are likely benefiting from a particular drug. One field of targeted therapy that has relied on biomarkers for many years is cancer immunotherapy which seeks to use vaccines molecules to activate and dir ect immune cells, and their secreted cytokines and antibodies, against tumors. Several cytokines have been found to be informative in understanding the type of immune response (e.g., Th1 or Th2). Molecular analyses have suggested that a combination of thes e immune markers could predict which patients will have clinical benefit. Equipment currently used for measuring a panel of cytokines is: 1) very expensive 2) highly labor-intensive and 3) limited in sensitivity. There is a need for a technology th at completely automates the measurement of user-configured panels of cytokines at increased sensitivity and more importantly that an individual investigator can afford. Such technology will accelerate the discovery process in oncological research initially and enable other areas of research as well. In phase I, we have successfully demonstrated a rapid and parallel immunoassay lab-on-a-chip based on manipulation of discrete sub-microliter droplets. Heterogeneous sandwich assays were performed on I L-6 within 10 minutes, which includes completely automated washing steps on a programmable chip. During phase I, we resolved a number of research issues to demonstrate the feasibility of performing immunoassays on a digital microfluidic chip while in Phase II we will build on those results to: scale up the number of user-configured immunoassays performed on a chip to 384 by developing a chip that can perform 48 simultaneous cytokine immunoassays on each of 8 PBMC samples stimulated by 8 peptides; demonstrat e reproducibility, linearity, range, LOD, recovery, inter/intra-assay variability on a statistically significant number of samples, perform method comparison, and develop cell handling capability on-chip for fully integrated operations. Our instrument (whi ch will fit within the Materials and Supplies budget) and disposable chips would be priced to be affordable for individual investigators. PUBLIC HEALTH RELEVANCE: Cancer immunotherapy research and development has been greatly benefiting from monitor ing multiple biomarkers, most notably several panels of cytokines. This monitoring information on the biomarker profiles will help reveal the roles that proteins play in responding to treatment with cancer vaccines and eventually lead to better cancer ther apies and its monitoring.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government