Lab-on-a-chip for multiplexed newborn screening of lysosomal storage disorders

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44HD057713-02
Agency Tracking Number: HD057713
Amount: $1,056,540.00
Phase: Phase II
Program: SBIR
Awards Year: 2009
Solicitation Year: 2009
Solicitation Topic Code: N/A
Solicitation Number: PHS2009-2
Small Business Information
ADVANCED LIQUID LOGIC
ADVANCED LIQUID LOGIC, 615 Davis Dr., Suite 800, RESEARCH TRIANGLE PARK, NC, -
DUNS: 140695474
HUBZone Owned: Y
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 VAMSEE PAMULA
 (919) 287-9010
 VKP@LIQUID-LOGIC.COM
Business Contact
 RICHARD WEST
Phone: (919) 287-9010
Email: information@liquid-logic.com
Research Institution
N/A
Abstract
DESCRIPTION (provided by applicant): Newborn screening is currently performed by collecting dried bloodspots from infants and then sending them to a lab for analysis. Lysosomal storage diseases alone number greater than 40 and there is an increasing necessity to screen for a number of disease conditions for which therapies are becoming available. Tandem mass spectrometry is an excellent multiplex detection technology widely utilized in newborn screening, but when applied to enzyme assays it is very expensive, time consuming, labor intensive, and more importantly the multiplexing power of mass spectrometry is not leveraged because each assay has to be performed individually. There is a need for an inexpensive, rapid, automated, and scalable technology for performing newborn screening assays that a mass spectrometer is not well-suited to perform. A digital microfluidic system for performing enzymatic assays in newborn screening will enable walkaway automation and multiplex several assays very inexpensively. Based on Advanced Liquid Logic's successful demonstration of digital microfluidic manipulation of nanoliter-sized droplets of enzymatic reagents and sample for dispensing from on-chip reservoirs, high speed transport, mixing, splitting and dilution, and absorbance, fluorescence, and luminescence detection of the assays, a disposable lab-on-a- chip will be developed. In phase I, we have successfully demonstrated a multiplex fluorescence enzymatic assay on a digital microfluidic cartridge to setup screening for Pompe, Fabry, and Hurler disorders on dried blood spot samples. Phase II work will focus on increasing the throughput of the cartridge to screen for 6 lysosomal storage disorders for which therapies exist including Pompe, Fabry, Hurler, Hunter, Gaucher, and Maroteaux-Lamy, on 96 dried blood spot samples yielding a total of 576 enzymatic assays on a single cartridge. Also, a pilot screening study will be performed in collaboration with Duke University and North Carolina State Lab of Public Health, which would involve screening about 10,000 dried blood spots on the digital microfluidic platform. PUBLIC HEALTH RELEVANCE: Newborn screening is performed on every infant born in the US and there is a growing interest in increasing the number of conditions screened for. In this project, a digital microfluidic platform will be developed to screen for many treatable conditions simultaneously using much lesser volume of blood from an infant. It would be greatly useful in identifying treatable diseases earlier.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government