Quasi-Isochronous Muon Collection Channels

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-FG02-09ER85246
Agency Tracking Number: 91123
Amount: $750,000.00
Phase: Phase II
Program: SBIR
Awards Year: 2010
Solicitation Year: 2010
Solicitation Topic Code: 38 b
Solicitation Number: DE-FOA-0000350
Small Business Information
Muons, Inc.
552 N. Batavia Avenue, Batavia, IL, 60510
DUNS: 364488857
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Charles Ankenbrandt
 (630) 740-1085
Business Contact
 Thomas Roberts
Title: Dr.
Phone: (630) 840-2424
Email: tjrob@muonsinc.com
Research Institution
Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. General statement of how this problem is being addressed. This is the overall objective of the combined Phase I and Phase II projects. A promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances is being investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons into RF bunches. The muon beam could then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, will be developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. The Phase II research will refine the QIHCC by continuing to develop the design concepts. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects will be addressed. The bunch recombination procedure will be developed into a complete design with 3-D simulations. Commercial applications and other benefits: Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include the use of muon beams to screen cargo containers for homeland security, low-dose radiography, and muon catalyzed fusion. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon beams for neutrino factories, and muon colliders as Higgs factories or energy-frontier discovery machines.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government