Extremelly High Bandwidth Rad Hard Data Acquisition System

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNC07QA67P
Agency Tracking Number: 066680
Amount: $69,990.00
Phase: Phase I
Program: SBIR
Awards Year: 2007
Solicitation Year: 2006
Solicitation Topic Code: S4.01
Solicitation Number: N/A
Small Business Information
27 Via Porto Grande, Rancho Palos Verdes, CA, 90275-2049
DUNS: 114422095
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Sean Woyciehowsky
 Principal Investigator
 (310) 377-6029
 woycieho@sbcglobal.net
Business Contact
 Vladimir Katzman
Title: Business Official
Phone: (310) 377-6029
Email: traffic405@cox.net
Research Institution
N/A
Abstract
Advancements in sensors/detectors are needed to support future NASA mission concepts including polarimetry, large format imaging arrays, and high-sensitivity spectroscopy. The corresponding data acquisition systems must employ high-speed, extra low power, linear analog-to-digital converters (ADCs) featuring a wide input bandwidth and reasonable effective number of bits, followed by a digital signal processor usually implemented inside a field-programmable gate array with a relatively low-speed data interface. In addition, radiation tolerance represents one of the main requirements for the space-oriented electronics. Commercially available ADCs feature high power consumption, high latency, poor linearity, and low radiation tolerance at high input bandwidths above 1GHz. To address the described needs, we propose a novel, low-power, high input bandwidth, radiation-tolerant, under sampling ADC with an output digital demultiplexer that enables direct data loading into a standard FPGA. Wide input bandwidth, low input return loss, 6-bit accuracy, low distortion and power consumption will be achieved through utilization of a proprietary adaptive matching filter and dual-output sample-and-hold amplifier followed by two reduced-rate ADCs. The digitized signals are delivered to the proprietary low-power LVDS output buffers after rate adjustment and realignment to the selected clock signal. Advanced technology featuring heterojunction bipolar transistors will provide the required radiation tolerance.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government