You are here

Novel approaches to extending glucose sensor lifespan

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R43DK085957-01
Agency Tracking Number: DK085957
Amount: $844,788.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: PHS2009-2
Timeline
Solicitation Year: 2009
Award Year: 2009
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
AEGIS BIOSCIENCES, LLC 665 N. RIVERPOINT BLVD
SPOKANE, WA 99202
United States
DUNS: 160608241
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 DAVID VACHON
 (509) 210-0736
 DAVID.VACHON@AEGISBIOSCIENCES.COM
Business Contact
 DAVID VACHON
Phone: (509) 210-0736
Email: david.vachon@aegisbiosciences.com
Research Institution
N/A
Abstract

DESCRIPTION (provided by applicant): Long term transcutaneous devices such as catheters; require patients to endure extended skin breaches (wounds) that can be difficult to manage clinically, i.e. infection and inflammation. These complications not only shorten device lifespan, but also compromise patient health. In the case of short-term commercial transcutaneous glucose sensors, FDA has approved their usage for 3-7 days for patients with diabetes. Although infection is an issue with these short-term sensors extending the in vivo lifespan of these sensors from days to weeks increases the risks of adverse effects. Adverse effects seen at sites of glucose sensor implantation include infection, irritation, redness, itching and inflammation. All these adverse effects can and do shorten sensor lifespan in vivo. All these adverse effectives not only compromise sensor function, but also discourage patient involvement in implantable sensors. Clearly, decreasing the risk of infections and inflammation at sensor implantation sites would likely not only increase sensor lifespan, but also decrease associated complications and adverse events. In the present proposal we proposed to develop and validate a number of hydrogel based sensor collars and coatings including one that are bio-enhanced to promote sensor lifespan in vivo. These sensor collars and coatings will be used alone and in combination to extend glucose sensor function in vivo. We believe this approach will usher in a new generation of devices / adjuvants that will enhance the function and extend lifespan of not only existing commercial sensors, but also future generation of trancutaneous glucose sensors. PUBLIC HEALTH RELEVANCE: Increasing the implantation time frame beyond the FDA approved 3-7 days for transcutaneous glucose sensors increases the risk of adverse effects, such as infection, irritation, redness, itching and inflammation, at sites of sensor implantation and as such decreases sensor lifespan in vivo. In order to avoid these adverse effects we propose to develop and validate a number of hydrogel based sensor collars and coatings including one that are bio-enhanced to promote sensor lifespan in vivo.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government