Developing a Noninvasive Method and Device for Assessing the Degree of Midperiphe

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44EY018025-02
Agency Tracking Number: EY018025
Amount: $1,050,720.00
Phase: Phase II
Program: SBIR
Awards Year: 2010
Solicitation Year: 2010
Solicitation Topic Code: NEI
Solicitation Number: PHS2010-2
Small Business Information
DUNS: 151391174
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (412) 963-6649
Business Contact
Phone: (412) 963-6649
Research Institution
DESCRIPTION (provided by applicant): The long-term objective of this application is to develop an imaging device for the early detection, diagnosis and quantification of the degree of midperipheral retinal ischemia in Diabetic Retinopathy (DR). Earlier diagnosis of DR could facilitate intervention at a stage that may prevent or lessen permanent damage from the ravages of the disease, in turn, improving patient quality of life and reducing lifetime treatment costs. DR is one of the more debilitating potential outcomes of diabetes posing a major threat to the quality of life of diabetics. Experts believe that DR is the leading cause of blindness in the industrialized world in people between the ages of 25 and 74 years old. The American Academy of Ophthalmology states that DR is the leading cause of blindness among working Americans and currently affects nearly seven million people in the U.S. Early detection can help treat DR and salvage about 90 percent of vision loss, but about one-third of the diabetic population remains undiagnosed, translating into approximately 5.7 million people in the U.S. Delay in the primary diagnosis of diabetes allows diabetic complications to progress significantly before detection further increasing the risks associated with the disease by making the treatment much more complicated. Diabetes management guidelines advocate initiation of therapeutic intervention early in the prognosis of the disease. Estimates of diabetics in the U.S. with DR range from 15% to as high as 40%. The goal of Neuro Kinetics diabetic screening methodology is to use a noninvasive, objective measure of diabetes-related damage to the peripheral retina that contributes to the development of central vision loss and the growth of abnormal blood vessels that can bleed and scar, leading to blindness. Unlike existing screening methods which employ photography of the back of the eye and reading centers, this device can provide an instantaneous answer to the patient and/or their doctor of the severity of the disease and indicate if immediate specialty eye care is warranted. By comparing the responses of an individual's pupil to varying brightness of lights directed either to the center of vision or to the peripheral vision, we can detect progressive retinal damage from DR while controlling for the effects of cataracts, medications, and autonomic dysfunction. Our preliminary data from a Phase I study has established testing conditions that appear to be capable of distinguishing individuals with moderate or severe DR from normal individuals with less than a 1:1000 false positive rate for normal people. We have the following specific aims for Phase II: (1) to develop a clinical version of the testing device that is self-contained and can operate more easily and rapidly in a lighted area; (2) to develop control, recording and automatic analysis software for assessment of data quality and interpretation; (3) to perform clinical testing on a total of 200 normal and diabetic subjects to establish the discrimination capabilities of the instrument as a screening tool and (4) to develop an application for pre-commercial FDA approval and testing. PUBLIC HEALTH RELEVANCE: According to the American Academy of Ophthalmology, Diabetic Retinopathy is the leading cause of blindness among working Americans and currently affects nearly seven million people in the U.S. There is widespread agreement that the current U.S. eye care delivery system cannot meet the screening needs of these patients by relying on traditional, clinical eye examinations. Neuro Kinetics is developing a rapid, noninvasive screening technology based on images of the pupil's response to unique patterns of light to detect retinal damage from diabetes at a stage that would warrant intervention and therapy to protect sight.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government