Development of a Quantum Cascade Laser-Based Detector for Ammonia and Nitric Acid

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$0.00
Award Year:
2002
Program:
SBIR
Phase:
Phase I
Contract:
DE-FG02-01ER83139
Award Id:
56937
Agency Tracking Number:
65821S01-II
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
45 Manning Road, Billerica, MA, 01821
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
n/a
Principal Investigator:
MarkZahniser
(978) 663-9500
mz@aerodyne.com
Business Contact:
CharlesKolb
65821
(978) 663-9500
kolb@aerodyne.com
Research Institute:
n/a
Abstract
65821 Aircraft measurements of ammonia and nitric acid can provide critical information on the sources and sinks of these atmospheric nitrogen species. This is important in understanding air quality, aerosol formation, visibility, and the impact of energy production and usage on global climate change. This project will develop a compact tunable infrared laser differential absorption spectrometer. Based on recent advances in room temperature pulsed quantum cascade lasers, it will greatly improve the sensitivity of real-time airborne measurements for the detection of ammonia and nitric acid at the 10 parts-per-trillion level. In Phase I, detection limits for atmospheric ammonia and nitric oxide, as a surrogate for nitric acid, were demonstrated using Peltier-cooled pulsed quantum cascade lasers at sub-part-per-billion mixing ratios. Measurements of laser line width as a function of electrical pulse shape were combined with a model of thermal heat flow in the laser junction and used to implement an improved pulse driver circuit that will minimize line width and improve detection sensitivity. A siloxyl-coated sampling cell and glass inlet were demonstrated, which minimize surface artifacts when sampling ammonia from the atmosphere. Phase II will design, build, and test a prototype instrument employing multiple quantum cascade lasers for detection of up to four gases simultaneously. Commercial Applications and Other Benefits as described by the awardee: A sensitive, cryogen-free, mid-infrared absorption method for atmospheric trace gas detection should have wide benefits for environmental research, medical diagnostics, and industrial process monitoring of gaseous compounds. Examples include air pollution monitoring, breath analysis, combustion exhaust diagnostics, and plasma diagnostics for semi-conductor fabrication.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government