You are here

Acrolein Monitor Using Quantum Cascade Laser Infrared Adsorption

Award Information
Agency: Environmental Protection Agency
Branch: N/A
Contract: EP-D-06-020
Agency Tracking Number: EP-D-06-020
Amount: $70,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: N/A
Solicitation Year: N/A
Award Year: 2006
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
45 Manning Rd
Billerica, MA 01821
United States
DUNS: 030817290
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Joanne Shorter
 Principal Scientist
 (978) 663-9500
Business Contact
 George Wittreich
Title: Executive Vice President
Phone: (978) 663-9500
Research Institution

Acrolein (CH2=CHCHO) has been identified by the U.S. Clean Air Act as a hazardous air pollutant because of its adverse health effect, particularly on respiratory systems. There are both anthropogenic and natural sources of acrolein in the environment. Acrolein is produced by combustion sources (e.g. vehicle exhaust, prescribed agricultural burning, cigarette smoke) and industrial sources, including manufacturing facilities of wood products. There is, however, very limited data quantifying the emissions of acrolein from these sources. There are also few reports of ambient levels because of the measurement limitations.

There is a need for air quality instrumentation for acrolein and other toxic air pollutants for routine air quality monitoring in urban areas for health effect assessment, and at specific sites for source assessment studies. The EPA Region 10 has identified as a priority issue the development of a measurement technique for monitoring acrolein. We propose to develop a fast respons novel quantum cascade laser system based on Tunable Infrared Laser Differential Adsorption Spectroscopy (TILDAS). The diversity of sources and the relatively high reactivity of acrolein require a highly sensitive, easily portable, and fast response measurement technique. The proposed acrolein monitor will meet these requirements, achieving sensitivities both in the pares-per-billion range for source monitoring and parts-per-trillion range for ambient monitoring.

The objective of the Phase I Research and Development effort is to determine the feasibility of a real-time mid-infrared TILDAS instrument to monitor acrolein. We will evaluate potential infrared spectral regions to determine the optimum region for acrolein monitoring. We will investigate background suppression techniques which are critical to achieving low detection limit. The Phase II instrument design will be identified in Phase I. The anticipated result of our approach is a robust, sensitive, real-time monitor of acrolein. It will be capable of long term operation in the field or laboratory with minimal maintenance.

There is a need for commercially available air quality instrumentation for acrolein and other toxic air pollutants. The infrared laser detection technique to be developed in this proposal will have wide commercial applications both for routine air quality monitoring and for source assessment of hazardous air pollutants.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government