Chemical Quick-Quench Probe for Aircraft Engine Emissions Measurements

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA9101-06-C-0194
Agency Tracking Number: F051-301-0251
Amount: $749,333.00
Phase: Phase II
Program: SBIR
Awards Year: 2007
Solicitation Year: 2005
Solicitation Topic Code: AF05-301
Solicitation Number: 2005.1
Small Business Information
45 Manning Road, Billerica, MA, 01821
DUNS: 030817290
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Paul Yelvington
 Senior Engineer
 (978) 932-0265
Business Contact
 Charles Kolb
Title: President
Phone: (978) 932-0290
Research Institution
The chemical composition of the exhaust streams of aircraft engines (augmented and non-augmented) and combustors are required for the determination of combustion efficiency and for understanding pollutant formation. Typically, extractive sampling is used to measure aircraft emissions; however, these measurements are biased by chemistry that can occur as the gas sample travels through the probe and sample line. The goal of this project is to develop a reliable probe for quenching chemistry in aircraft exhaust, thus minimizing the measurement errors caused by chemical conversion during sampling. Under Phase I, ARI and its Phase II subcontractor, CFDRC, performed a comparison of potential quick-quench probe designs using advanced chemical kinetic and computation fluid-dynamic models. A prototype probe, which combines the best aspects of existing aerodynamic-quench probes and dilution probes, was constructed and shown to have good aerodynamic performance. Under Phase II, the prototype will be further refined using model-based design and laboratory testing of sampling performance (using a flat-flame burner) and aerodynamic performance (using a blowdown facility). Two rounds of engine tests will also be performed at the UTSI jet engine test bed using a novel radio-labeling technique to quantitatively determine the sampling efficiency. At the finish of this project, an optimized chemical quick-quench probe will be delivered including hardware, mechanical drawings, operating manual, and performance data.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government