Nitrogen Dioxide and Light-Absorbing Carbon Sensors for Personal Exposure Assessm

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$1,993,190.00
Award Year:
2009
Program:
SBIR
Phase:
Phase I
Contract:
1R44ES018494-01
Award Id:
93762
Agency Tracking Number:
ES018494
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
AERODYNE RESEARCH, INC, 45 MANNING RD, BILLERICA, MA, 01821
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
030817290
Principal Investigator:
ANDREW FREEDMAN
() -
Business Contact:
JAMES AKIMCHUK
() -
kolb@aerodyne.com
Research Institution:
n/a
Abstract
DESCRIPTION (provided by applicant): This project addresses the need for the development of field deployable, sensors which provide real- time quantitative measurements at point-of-contact of airborne species that are injurious to human health - in this p articular case, nitrogen dioxide and light-absorbing carbon. Nitrogen dioxide (NO2) is a highly toxic gas which when inhaled, causes the formation of nitric acid in the lungs and is thought to trigger asthmatic attacks. Light absorbing carbon (or LAC, a cl assification which includes soot, black carbon, brown carbon, graphitic carbon, etc.) comprises a significant fraction of respirable particles. Both species are byproducts of combustion systems including motor vehicles (especially diesel-powered), power pl ants, incinerators and other stationary combustors. Numerous epidemiological studies have shown that long-term exposure to fine particles and/or gases such as nitrogen dioxide produced by vehicular traffic is associated with various forms of heart and lung disease. The proposed program, a collaborative effort between Aerodyne Research, Inc. (a small business) and the Harvard School of Public Health, will involve the design, construction, verification and field testing of portable sensors which will provide real time data output which can be collected using a WiFi network. The sensors are based on a state-of-the-art optical technique, called cavity attenuated phase shift spectroscopy (CAPS), which utilizes very high reflectivity (Rgt0.9998) mirrors in an opti cal cavity in order to provide the long path length ((hundreds of meters) required to detect these species optically. Instead of employing a Beer's Law measurement, in which the intensity of light is measured, these monitors measure the average photon life time within the cavity, a quantity which is directly related to the concentration of the absorbing species. As such, they provide higher sensitivity, stability and reliability than instruments that employ more conventional techniques. The sensors to be dev eloped will provide fast time response (lt30 seconds) and high sensitivity (1 ppbv for nitrogen dioxide and 1 5g m-3 for LAC); real-time data streaming to the internet via a Wi-Fi connection will be included in the sensor unit. The sensors will operate for periods of 8 hours or longer using batteries and will be comparable in weight to a lightweight laptop computer. PUBLIC HEALTH RELEVANCE: These monitors will be used by the air pollution research community to monitor point-of- contact exposure to n itrogen dioxide and light-absorbing carbon. They can also be deployed in factories, power plants, incinerators and other stationary combustor facilities that are subject to occupational health and safety regulations.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government