Silicon Nanomembrane-Based 3-D Photonic Crystals for optical true time delay lines having integratability with printable FETs and Antenna Elements

Award Information
Department of Defense
Air Force
Award Year:
Phase I
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
AF 08TT08
Solicitation Number:
Small Business Information
Omega Optics, Inc.
10435 Burnet Rd., Suite 108, Austin, TX, 78758
Hubzone Owned:
Minority Owned:
Woman Owned:
Principal Investigator:
Maggie Chen
Sr. Research Scientist
(512) 996-8833
Business Contact:
Clara Chen
(512) 996-8833
Research Institution:
University of Texas at Austin
Ray Chen
10100 Burnet Rd. MERB-160
Austin, TX, 78758
(512) 471-7035
Nonprofit college or university
Omega Optics, Inc. and the University of Texas at Austin propose Si-nanomembrane-based 3-D photonic crystal waveguides (PCW) for optical true-time-delay (TTD) lines with a fully printable phased-array antenna (PAA). The TTD lines are composed of highly dispersive slow-light enhanced Si-nanomembrane PCWs which will be integrated with Other key printable components including field effect transistor (FET) amplifiers and antenna elements on a flexible substrate such as Kapton. The slow light effect of silicon nano-membrane-based PCWs will dramatically reduce the waveguide length and therefore the payload for air-borne applications due to the enhanced time delay through wavelength tuning. The group velocity dispersion of nano-membrane-based PCW can be as high as 50 ps/nm∙mm, which is 107 times that of regular telecom fiber. Due to the enhanced dispersion, time delay of 1ns can be obtained with only 1 mm PCW employing wavelength tuning of 20nm. The fully printed (using special ink jet printer) high frequency carbon nanotube (carrier mobility of 46770cm2/V s) based FET amplifier has an expected operating frequency as high as 100GHz. For Phase I program, the feasibility will be proven of the Si-nanomembrane PCW TTD device in conjunction with other printable antenna elements. BENEFIT: Si nanomembranes are being widely investigated and have potential applications in many areas. The proposed approach will lead to a new generation of Si nanomembrane-based 3-D photonic crystal waveguide true time delay (TTD) device, which will have both military and civilian telecommunications applications. For military applications, it will be used in radar, communication, electronic warfare antenna signal processing systems, and wideband TTD applications, including phased-array beam steering, tunable microwave filtering and radar signal simulators. In optical telecommunications industry, the time delay module will provide a high performance and low cost optical buffering solution within all-optical routers. Due to the reduced size and weight, low unit cost and supreme performance, the TTD module will lead to a large market in optical/RF networking systems for both wide area networks (WANs) and metro area networks (MANs) where wired and wireless communications are combined. The fully printable technique combining carbon nanotube field effect transistor, antenna elements and the 3-D photonic crystal waveguide will provide low cost, high yield and conformal performance. This will revolutionize the phased-array radar technology for both civilian and military.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government