Parallel Detection of Multiple Biomarkers During Spaceflight

Award Information
Agency:
National Aeronautics and Space Administration
Branch
n/a
Amount:
$69,999.00
Award Year:
2006
Program:
SBIR
Phase:
Phase I
Contract:
NNA06AA13C
Award Id:
77772
Agency Tracking Number:
053891
Solicitation Year:
n/a
Solicitation Topic Code:
n/a
Solicitation Number:
n/a
Small Business Information
44 Hunt Street, Watertown, MA, 02472
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
073804411
Principal Investigator:
Daniel Hall, PhD
Principal Investigator
(617) 926-1167
DHall@RMDInc.com
Business Contact:
Gerald Entine, PhD
President
(617) 926-1167
GEntine@RMDInc.com
Research Institute:
n/a
Abstract
Maintaining the health of astronauts during extended spaceflight is critical to the success of the mission. Radiation Monitoring Devices, Inc. (RMD) proposes an instrument to monitor astronauts' physiological responses to stress, microgravity, radiation, infection, and pharmaceutical agents through detection of multiple biological markers. This will be accomplished under conditions of microgravity, within the weight, size and power requirements of space missions, and with minimal human intervention. One representative biomarker of interest is 8-oxo-dG that serves as an indicator of oxidative DNA damage from radiation, chemicals, inflammation, and by-products of metabolism. Upon repair of the damaged DNA, 8-oxo-dG is excreted into the urine where it may be conveniently monitored. However, serious obstacles to detection and quantification arise due to the low amounts present and the complex chemical composition of urine. Current techniques suffer from at least one of the following shortcomings: they are slow and labor-intensive, require complex instrumentation and a highly-trained operator, cannot be easily multiplexed to monitor many analytes, consume large amounts of reagents, and are not compatible for use under microgravity. We will overcome these limitations by incorporating all analytical steps into a single microfluidic chip. Our system will utilize affinity purification and electrochemical detection.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government